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1 Introduction

The discovery of moduli stabilization [1] led to the recognition that there is a landscape

of (metastable) string vacua. This resulted in a highly increased interest in string theory

in backgrounds with fluxes. While many results were obtained within the framework of

effective field theories (gauged supergravity), a direct stringy approach is desirable. The

pure spinor formalism [2] succeeds in doing so, however here developing work remains

to be done. On the other hand we do have an alternative description for a subclass of

these backgrounds. Indeed non-linear σ-models in two dimensions with an N = (2, 2)

supersymmetry — the so-called RNS models — provide a worldsheet description of type II

superstrings in backgrounds including general NSNS-fluxes (no RR-fluxes and a constant

dilaton however) [3]-[12]. The requirement of N = (2, 2) supersymmetry imposes severe

restrictions on the allowed geometries. Imposing conformal invariance at the quantum

level (the vanishing of the β-functions) gives further conditions allowing an analysis which

potentially surpasses a supergravity one as higher order α′ corrections are — in principle

— calculable.

A manifestly supersymmetric formulation of these models clarifies the geometric struc-

ture and greatly facilitates (quantum) calculations. Such a formulation is now known: any

N = (2, 2) non-linear σ-model can be parameterized in N = (2, 2) superspace in terms of

chiral, twisted chiral and semi-chiral superfields [7].

When dealing with backgrounds which contain D-branes one has to consider non-linear

σ-models with boundaries. The presence of boundaries breaks the N = (2, 2) worldsheet

supersymmetry to an N = 2 supersymmetry and further enriches the geometric structure.

The present paper concludes the study of the classical geometry of these models in a

manifestly supersymmetric formulation (N = 2 boundary superspace).

While a lot of pioneering work was done on supersymmetric D-brane configura-

tions [13]–[20], the study of a manifestly N = 2 supersymmetric worldsheet formulation of

D-branes started only in [21] where N = 1 and N = 2 boundary superspace was set up.

This was subsequently applied to the study of A- and B-branes on Kähler manifolds [22].

Contrary to expectations, A-type boundary conditions were indeed possible in N = 2 su-

perspace. This was then extended to models which include NSNS-fluxes where in first

– 1 –
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instance the simplest case — mutually commuting complex structures (or put differently

models described in terms of twisted chiral and chiral superfields) — was studied [23]. An

interesting observation was that very involved brane configurations, e.g. coisotropic branes,

could easily be constructed from simple brane configurations through supersymmetry pre-

serving T-duality transformations.

In the present case we turn our attention to the most general N = (2, 2) non-linear σ-

model. In such models the complex structures do not necessarily commute and a complete

description needs, besides twisted chiral and chiral superfields, semi-chiral superfields as

well. We identify the brane configurations compatible with worldsheet supersymmetry. The

most transparant case is where only semi-chiral and twisted chiral superfields are present.

Here one finds a very clear and explicit generalization of lagrangian and coisotropic branes

on Kähler manifolds to the non-Kähler case. Having models described solely by chiral fields

results in B-branes wrapping around holomorphic cycles of Kähler manifolds. The general

case – where all three types of superfields are present — interpolates between the two previ-

ous cases. Even here the branes can be interpreted as generalized coisotropic submanifolds

however in the context of a foliation by symplectic leaves of a Poisson manifold.

In the next section we review N = (2, 2) non-linear σ-models in N = (2, 2) super-

space. We also introduce boundaries, reducing N = (2, 2) superspace to N = 2 boundary

superspace. We identify the three types of superfields in boundary superspace.

Section 3 classifies the boundary conditions compatible with N = 2 supersymmetry

and leads to the identification of the various D-brane configurations. Some of these results

were already announced in [24]. The various configurations are interpreted in terms of

generalized complex submanifolds of a generalized Kähler manifold.

Section 4 turns to duality transformations which interchange the various types of su-

perfields. After briefly reviewing the duality transformations which do not need isometries

we make a thorough study of duality transformations in the presence of isometries.

In section 5 we illustrate our results through several examples. In particular we focus on

the non-linear σ-model with the Hopf surface S3×S1 as target manifold (also known as the

Wess-Zumino-Witten model on SU(2) × U(1)) where we explicitly construct langrangian

D2-branes and coisotropic D4-branes. In order to achieve this we start from the much

simpler D1- and D3-brane configurations on D × T 2 which we then dualize to the above

mentioned D2- and D4-branes on S3 × S1.

We end with our conclusions and an outlook on future developments. The first ap-

pendix summarizes our conventions. In appendix B we briefly review N = (1, 1) and N = 1

supersymmetric non-linear σ-models in superspace. Appendix C summarizes some useful

notions of generalized complex geometry. In the last appendix we digress on the role of

auxiliary fields in T-duality transformations.

2 N=2 superspace

2.1 N = (2, 2) supersymmetry in the absence of boundaries

An N = (2, 2) non-linear σ-model is determined by the following data:

– 2 –
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• An even dimensional (target) manifold M. We denote the local coordinates by Xa,

a ∈ {1, · · · , 2n}.

• A metric gab(X) on the manifold.

• A closed three-form Habc(X) on the manifold. Locally we introduce a two-form po-

tential bab(X) and we write Habc = −(3/2) ∂[abbc]. Obviously the two-form potential

is only defined modulo a gauge transformation, bab ≃ bab + ∂akb − ∂bka.

• Two (integrable) complex structures Ja
±b(X), Ja

±cJ
c
±b = −δa

b , which are such that the

metric is hermitian with respect to both of them: Jc
±a J

d
±b gcd = gab.

• The complex structures are covariantly constant though with different connections:

0 = ∇±
c J

a
±b ≡ ∂c J

a
±b + Γa

±dcJ
d
±b − Γd

±bcJ
a
±d , (2.1)

with the connections Γ± given by,

Γa
±bc ≡ { a

bc} ±Ha
bc . (2.2)

For obvious reasons this type of target manifold geometry is called a bihermitian ge-

ometry. Note that if {M, g,H, J+, J−} defines a bihermitian geometry then so does

{M, g,H, J+,−J−}. This is a local realization of mirror symmetry.

The hermiticity of the metric with respect to the two complex structures implies the

existence of two two-forms,

ω±
ab = −ω±

ba ≡ −gacJ
c
±b. (2.3)

In general they are not closed. Using eq. (2.1), one shows that,

ω±
[ab,c] = ±2Jd

±[aHbc]d = ±(2/3)Jd
±aJ

e
±bJ

f
±cHdef , (2.4)

where for the last step one uses the fact that the Nijenhuis tensors1 vanish. When the

torsion vanishes, the two-forms are closed and this reduces to the usual Kähler geometry.

Later in this section we will show that even when the torsion does not vanish one might

have — under special circumstances — closed two-forms defined out of the metric g and

the complex structures J±.

From a local point of view, the equations above might be viewed as a set of differential

and algebraic equations which should be solved. For a single complex structure, say J+,

this is indeed easily done. Going to complex coordinates ZA and ZĀ, a ∈ {1, · · · , n},
where J+ assumes its canonical form, JA

+ B = iδA
B , J Ā

+ B̄ = −iδA
B , JA

+ B̄ = J Ā
+B = 0, one

1 Out of two (1, 1) tensors Ra
b and Sa

b, one constructs a (1, 2) tensor N [R, S]abc, the Nijenhuis tensor,

as N [R, S]abc = Ra
dSd

[b,c] + Rd
[bS

a
c],d + R ↔ S. In the present context, the integrability of J+ and J− is

equivalent to N [J+, J+] = N [J−, J−] = 0.

– 3 –
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immediately finds using eq. (2.1) that all conditions are solved provided metric and torsion

potential are parameterized in terms of a (locally defined) one form mA:

gAB̄ =
1

2

(

∂AmB̄ + ∂B̄mA

)

,

bAB = −1

2

(

∂AmB − ∂BmA

)

, bĀB̄ = −1

2

(

∂ĀmB̄ − ∂B̄mĀ

)

, (2.5)

and all other components zero. There is a residual freedom in defining the one-form mA:

mA ≃ mA + nA + i ∂Af , where nA is holomorphic — ∂B̄nA = 0 — and f is an arbitrary

real function. The precise form of b is obviously gauge dependent, only the torsion 3-form

HABC̄ = ∂C̄(∂AmB − ∂BmA)/4 has an invariant meaning.

Solving the conditions for both complex structures J+ and J− simultaneously is more

involved. Nonetheless — as the off-shell description of these models in N = (2, 2) su-

perspace is known [7] (building on earlier work in [8]-[11]) — it can be done in terms

of a single real potential. The construction starts from the observation that the terms

in the algebra which do not close off-shell are all proportional to the commutator of the

two complex structures [J+, J−]. As a consequence one expects that additional auxiliary

fields will be needed in the direction of coker[J+, J−] while this will not be the case for

ker[J+, J−] = ker(J+ − J−) ⊕ ker(J+ + J−).

Decomposing the tangent space as ker(J+ − J−) ⊕ ker(J+ + J−) ⊕ coker[J+, J−] one

shows that the first subspace gets parameterized by chiral, the second by twisted chiral

and the last one by semi-chiral N = (2, 2) superfields [7]. The three types of superfields

are defined by the following constraints:2

Semi-chiral superfields: lα̃, l
¯̃α, rµ̃, r

¯̃µ, α̃, ¯̃α, µ̃, ¯̃µ ∈ {1, · · · ns},

D̄+l
α̃ = D+l

¯̃α = D̄−r
µ̃ = D−r

¯̃µ = 0. (2.6)

Twisted chiral superfields: wµ, wµ̄, µ, µ̄ ∈ {1, · · · nt},

D̄+w
µ = D−w

µ = D+w
µ̄ = D̄−w

µ̄ = 0. (2.7)

Chiral superfields: zα, zᾱ, α, ᾱ ∈ {1, · · · nc},

D̄±z
α = D±z

ᾱ = 0. (2.8)

It is clear that chiral and twisted chiral N = (2, 2) superfields have the same number of

components as N = (1, 1) superfields while semi-chiral N = (2, 2) superfields have twice as

many, half of which are — from N = (1, 1) superspace point of view — auxiliary.

Note that given {M, g,H}, the choice for J+ and J− is not necessarily unique. Consider

e.g. a hyper-Kähler manifold (so H = 0, this discussion was given in [10]) where one

has three complex structures Ji, i ∈ {1, 2, 3}, satisfying JiJj = −δij + εijkJk. If one

chooses J+ = J− = sin θ cosφJ1 + sin θ sinφJ2 + cos θJ3 with φ ∈ [0, 2π], θ ∈ [0, π], one

2We refer to the appendix for our conventions. We make a distinction between letters from the beginning

(α, β, γ, ...) and letters from the middle of the Greek alphabet (µ, ν, ρ, ...)

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
1
0
5

gets a description in terms of chiral fields only. Choosing J+ = −J− = sin θ cosφJ1 +

sin θ sinφJ2 + cos θJ3, gives a description in terms of twisted chiral fields. Finally, one

could also put J+ = J1 and J− = cosφJ2 + sinφJ3 in which case {J+, J−} = 0 which

implies ker[J+, J−] = ∅. As a consequence the model is now formulated in terms of semi-

chiral superfields.

The most general action involving these superfields and consistent with dimensions is

given by,

S = 4

∫

d2σ d2θ d2θ̂ V (l, l̄, r, r̄, w, w̄, z, z̄), (2.9)

where the Lagrange density V (l, l̄, r, r̄, w, w̄, z, z̄) is an arbitrary real function of the semi-

chiral, the twisted chiral and the chiral superfields. It is defined modulo a generalized

Kähler transformation,

V → V + F (l, w, z) + F̄ (l̄, w̄, z̄) +G(r̄, w, z̄) + Ḡ(r, w̄, z). (2.10)

These generalized Kähler transformations are essential for the global consistency of the

model, see e.g. [25]. Reducing the action in eq. (2.9) to N = (1, 1) superspace one finds

that D̂−lα̃ and D̂+r
µ̃ (and their complex conjugates) are auxiliary fields. Before doing so,

let us introduce some notation. We write,

MAB =

(

Vab Vab̄

Vāb Vāb̄

)

, (2.11)

where, (A, a) ∈ {(l, α̃), (r, µ̃), (w,µ), (z, α)} and (B, b) ∈ {(l, β̃), (r, ν̃), (w, ν), (z, β)}. In

this way e.g. we get that Mzr is the 2nc × 2ns matrix given by,

Mzr =

(

Vαν̃ Vα¯̃ν

Vᾱν̃ Vᾱ¯̃ν

)

. (2.12)

Note that MT
AB = MBA. We also introduce the matrix P,

P ≡
(

1 0

0 −1

)

, (2.13)

with 1 the unit matrix and using this we write,

CAB ≡ PMAB −MABP, AAB ≡ PMAB +MABP. (2.14)

– 5 –
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Using this notation one obtains — after elimination of the auxiliary fields — the

complex structures,

J+ =











iP 0 0 0

iM−1
lr Cll iM

−1
lr PMlr iM

−1
lr Clw iM−1

lr Clz

0 0 iP 0

0 0 0 iP











,

J− =











iM−1
rl PMrl iM

−1
rl Crr iM

−1
rl Arw iM−1

rl Crz

0 iP 0 0

0 0 −iP 0

0 0 0 iP











,

(2.15)

where we labeled rows and columns in the order l, l̄, r, r̄, w, w̄, z, z̄. Note that neither of

them is in the canonical (diagonal) form. One easily shows [10] that making a coordinate

transformation which replaces rµ̃ and r
¯̃µ by Vα̃ and V ¯̃α resp. while keeping the other co-

ordinates as they are, diagonalizes J+. Similarly, a coordinate transformation which goes

from lα̃ and l
¯̃α to Vµ̃ and V ¯̃µ and keeping the other coordinates fixed diagonalizes J−. This

allows one to reinterpret the generalized Kähler potential as the generating functional for

a canonical transformation bringing one from a coordinate system where J+ assumes its

standard diagonal form to another coordinate system where J− has its canonical form (and

vice-versa) [7].

From the second order action one reads off the metric g and the torsion potential b.

We write both of them together e = g + b with e given by,

e =
1

2
JT

+











0 Mlr Mlw Mlz

−Mrl 0 0 0

0 Mwr Mww Mwz

0 Mzr Mzw Mzz











J− +
1

4











0 0 −Mlw Mlz

0 0 −Mrw Mrz

−Mwl −Mwr −2Mww 0

Mzl Mzr 0 2Mzz











. (2.16)

We will give a more elegant expression for the metric and torsion potential later in this

section. However, when only semi-chiral fields are present, the expressions for the metric

and torsion potential following from eq. (2.16) greatly simplify,

g =
1

4

(

0 Mlr

−Mrl 0

)

[

J+, J−
]

,

b =
1

4

(

0 Mlr

−Mrl 0

)

{

J+, J−
}

. (2.17)

Similarly, if only twisted chiral and chiral fields are present, the metric and torsion potential

following from eq. (2.16) are given by,

gαβ̄ = +Vαβ̄, gµν̄ = −Vµν̄ , bαν = +
1

2
Vαν , bαν̄ = −1

2
Vαν̄ , (2.18)

– 6 –
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and complex conjugate. Note that as we are not yet considering boundaries, b is only

defined modulo a gauge transformation. The relevant gauge invariant object is the torsion

3-form H ∼ db whose explicit form is unfortunately in general rather involved.

We already noted the existence of the “local mirror transform”, {M, g,H, J+, J−} →
{M, g,H, J+,−J−}. In superspace this is simply realized by,

V (l, l̄, r, r̄, w, w̄, z, z̄) → −V (l, l̄, r̄, r, z, z̄, w, w̄). (2.19)

Moreover, let us remark that depending on the field content one can have several two-

forms which — using the conditions which guarantee the existence of an N = (2, 2) bulk

supersymmetry — can be shown to be closed and which are linear in the generalized Kähler

potential.

• There are no chiral fields, so ker(J+ − J−) = ∅. Then,

Ω
(−)
ab ≡ 2 gac

(

(J+ − J−)−1
)c

b, (2.20)

is a closed form. It is linear in the generalized Kähler potential and it is explicitely

given by,

Ω(−) = − i

2







Cll Alr Clw

−Arl −Crr −Arw

Cwl Awr Cww






, (2.21)

where the matrices C and A were defined in eq. (2.14). We used a basis (l, l̄, r, r̄, w, w̄).

When only twisted chiral fields are present we have that J ≡ J+ = −J−, the geome-

try becomes Kähler and Ω(−) reduces to the usual Kähler two-form, Ω
(−)
ab = −gacJ

c
b.

The two-form Ω(−) has generically no well defined holomorphicity properties with

respect to either J+ or J−. One finds,

Ω(−)
ac Jc

±b = −Ω
(−)
bc Jc

∓a. (2.22)

Having the two-form Ω(−) and the complex structures J± allows one to neatly

characterize the remainder of the geometry. One finds,

gab = +
1

2
Ω(−)

ac

(

J+ − J−)cb,

bab = −1

2
Ω(−)

ac

(

J+ + J−)cb, (2.23)

where b is equivalent — modulo a gauge transformation — to the previously given

expression (i.e. we still have H = db).

• There are no twisted chiral fields, so ker(J+ + J−) = ∅. Then,

Ω
(+)
ab ≡ 2 gac

(

(J+ + J−)−1
)c

b, (2.24)

– 7 –
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is a closed form. Again it is linear in the generalized Kähler potential,

Ω(+) =
i

2







Cll Clr Clz

Crl Crr Crz

Czl Czr Czz






, (2.25)

where we used a basis (l, l̄, r, r̄, z, z̄). When no semi-chiral fields are present we

get J ≡ J+ = J− and the geometry becomes Kähler with Ω(+) being precisely the

Kähler two-form. Here as well one finds that Ω(+) has no particular properties with

respect to either J+ or J−,

Ω(+)
ac Jc

±b = Ω
(+)
bc Jc

∓a. (2.26)

As before we can express the metric and the torsion potential in terms of the closed

two-form and the complex structures,

gab = +
1

2
Ω(+)

ac

(

J+ + J−)cb,

bab = −1

2
Ω(+)

ac

(

J+ − J−)cb, (2.27)

where again it should be noted that b is only defined modulo a gauge transformation.

• There are only semi-chiral fields, so ker[J+, J−] = ∅. Then both Ω(−) and Ω(+) exist.

On top of that we have that,

Ω
(±)
ab ≡ 2 gac

(

[J+, J−]−1
)c

b, (2.28)

is a closed two-form as well. In terms of the generalized Kähler potential it is given by,

Ω(±) =
1

2

(

0 Mlr

−Mrl 0

)

, (2.29)

where we used a basis (l, l̄, r, r̄). In this case we find that Ω(±) is a (2, 0) + (0, 2)

two-form with respect to both J+ and J−,

Ω(±)
ac Jc

+b = −Ω
(±)
bc Jc

+a, Ω(±)
ac Jc

−b = −Ω
(±)
bc Jc

−a. (2.30)

The relation with Ω(−) and Ω(+) is explicitly given by,

Ω(−) = −Ω(±) (J+ + J−) , Ω(+) = +Ω(±) (J+ − J−) . (2.31)

Finally, let us return to the general case where semi-chiral, twisted chiral and chiral

superfields are simultaneously present. The expressions in eqs. (2.23) and (2.27) suggest

the following parameterization for g and b,

gab = +
1

2
Ω+acJ

c
+b +

1

2
Ω−acJ

c
−b,

bab = −1

2
Ω+acJ

c
+b +

1

2
Ω−acJ

c
−b, (2.32)
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where Ω± are two-tensors with a priory no particular (symmetry) properties. Through a

suitable gauge choice for b one can always turn either Ω+ or Ω− into a closed two-form

as can be verified for e.g. Ω+ using the expressions for g and b given in eq. (2.5). Using

those one finds that Ω+ can be written as Ω+ab = ∂akb − ∂bka with kA = −(i/2)mA and

kĀ = (i/2)mĀ. However the other Ω will in general not be a two-form. An explicit example

of this is the case where only twisted chiral and chiral superfields are present. The one-

form used in eq. (2.5) is then explicitly given by mα = Vα and mµ = −Vµ (and complex

conjugate). Using this one easily verifies that Ω+ is a closed two-form while Ω− is neither

anti-symmetric nor symmetric.

Choosing a gauge for b such that Ω+ is a closed two-form, given by,

Ω+ = − i

2











Cll Alr Clw Alz

−Arl −Crr −Arw −Crz

Cwl Awr Cww Awz

−Azl −Czr −Azw −Czz











, (2.33)

with respect to the basis (l, l̄, r, r̄, w, w̄, z, z̄), one finds that Ω− is generically neither anti-

symmetric nor symmetric and it can not be expressed in terms of linear derivatives of the

potential. It is explicitly given by,

Ω− =
i

2











Cll Alr Clw Alz

−Arl −Crr −Arw −Crz

Cwl Awr Cww Awz

Czl + Zzl Czr + Zzr Azw + Zzw Czz + Zzz











, (2.34)

where we have,

Zzl = −2MzlM
−1
rl PMrl, (2.35)

Zzr = +2MzlM
−1
rl PCrrP, (2.36)

Zzw = −2MzlM
−1
rl PArwP, (2.37)

Zzz = +2MzlM
−1
rl PCrzP. (2.38)

Locally we can write 2Ω+ab = ∂aBb − ∂bBa where Ba = i
(

Vl,−Vl̄,−Vr, Vr̄,

Vw,−Vw̄,−Vz, Vz̄

)

. When there are no chiral fields present, Ω± reduces to ±Ω(−). We

thus reproduce the situation defined in eq. (2.20) and subsequent relations.

However, using a different gauge choice for b one makes Ω+ non-linear in V and Ω− a

closed two-form,

Ω− =
i

2











Cll Clr Clw Clz

Crl Crr Crw Crz

Cwl Cwr Cww Cwz

Czl Czr Czw Czz











, (2.39)
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w.r.t. the basis (l, l̄, r, r̄, w, w̄, z, z̄). We get for Ω+ now,

Ω+ =
i

2











Cll Clr Clw Clz

Crl Crr Crw Crz

−Cwl +Wwl −Awr +Wwr −Cww +Www −Cwz +Wwz

Czl Czr Czw Czz











, (2.40)

with,

Wwl = −2MwrM
−1
lr PCllP, (2.41)

Wwr = +2MwrM
−1
lr PMlr, (2.42)

Www = −2MwrM
−1
lr PClwP, (2.43)

Wwz = −2MwrM
−1
lr PClzP. (2.44)

In absence of twisted chiral fields, Ω± reduces to Ω(+), which yields the same relations as

in eq. (2.24) and subsequent expressions.

We stress once more that while the introduction of the two-form Ω+ will turn out to

be most useful, it is not globally well defined as its precise form explicitly depends on the

gauge choice for b.

2.2 Boundaries and N = 2 superspace

We now introduce a boundary in N = (2, 2) superspace which breaks half of the su-

persymmetries, reducing N = (2, 2) to N = 2. The boundary3 is defined by σ = 0,

θ′ ≡ (θ+ − θ−)/2 = 0 and θ̂′ ≡ (θ̂+ − θ̂−)/2 = 0.

When passing to N = 2 superspace, we get the following structure for the superfields:

Semi-chiral superfields: lα̃, l
¯̃α, rµ̃, r

¯̃µ, D′lα̃, D̄′l ¯̃α, D′rµ̃, D̄′r ¯̃µ are unconstrained N = 2

superfields. The remaining components are determined by

D̄′lα̃ = −D̄lα̃, D′l
¯̃α = −Dl

¯̃α, D̄′rµ̃ = +D̄rµ̃, D′r
¯̃µ = +Dr

¯̃µ. (2.45)

Reducing the action to N = 1 superspace, one finds that D′lα̃, D̄′l ¯̃α, D′rµ̃ and D̄′r ¯̃µ

are all auxiliary.

Twisted chiral superfields: wµ, wµ̄ are unconstrained N = 2 superfields. The other

components are determined by,

D′wµ = +Dwµ, D̄′wµ = −D̄wµ, D′wµ̄ = −Dwµ̄, D̄′wµ̄ = +D̄wµ̄. (2.46)

Chiral superfields: zα, zᾱ, D′zα, D̄′zᾱ are constrained N = 2 superfields. They satisfy,

D̄zα = Dzᾱ = 0,

D̄D′zα = −2i∂σz
α, DD̄′zᾱ = −2i∂σz

ᾱ. (2.47)

3This is a so called B-type boundary. Alternatively we could have introduced an A-type boundary

defined by σ = 0, θ′
≡ (θ+

− θ−)/2 = 0 and θ̂′
≡ (θ̂+ + θ̂−)/2 = 0. Throughout this paper we will always

use B-type boundary conditions as switching to A-type boundary conditions amounts to performing the

local version of the mirror transform as defined in eq. (2.19) [22].
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The other components are fixed by,

D̄′zα = D′zᾱ = 0. (2.48)

Concluding: viewed from the boundary, both semi-chiral and twisted chiral superfields are

very similar as they both give rise to unconstrained superfields. Chiral fields on the other

hand remain constrained (chiral) on the boundary.

One verifies that the difference between the two measures
∫

d2σD+D−D̂+D̂− and
∫

d2σDD̂D′D̂′ is just a boundary term. So the most general N = 2 invariant action which

reduces to the usual action when boundaries are absent is,

S = −
∫

d2σ d2θ d2θ′ V (X, X̄) + i

∫

dτ d2θW (X, X̄), (2.49)

with V (X, X̄) and W (X, X̄) real functions of the semi-chiral, the twisted chiral and the

chiral superfields. The generalized Kähler potential V is arbitrary but the dependence of

the boundary potential on the semi-chiral and twisted chiral fields will be determined by

the boundary conditions as we will show later on. The action is still invariant under the ge-

neralized Kähler transformations eq. (2.10) provided the boundary potential W transforms

as well,

W →W − i
(

F (l, w, z) − F̄ (l̄, w̄, z̄)
)

− i
(

G(r̄, w, z̄) − Ḡ(r, w̄, z)
)

. (2.50)

This implies that
(

V +iW
)

µ̄
,
(

V +iW
)

¯̃α
and

(

V +iW
)

µ̃
(and their complex conjugates) are

invariant expressions. Note that when dealing with the global definition of the geometry,

eqs. (2.10) and (2.50) play an important role. Indeed when going from one coordinate

system to another on the overlap of two neighbourhoods one finds that the generalized

Kähler potential is invariant modulo a generalized Kähler transformation eq. (2.10). The

requirement that the boundary potential should transform as in eq. (2.50) imposes then

severe restrictions on the form of W . An explicit example of this can be found in [23].

Reducing the action, eq. (2.49) to N = 1 boundary superspace yields,

S = Sbulk + i

∫

dτ dθ
(

Ba + ∂aW
)

D̂Xa, (2.51)

where we denoted the superfields collectively byX. The locally defined one-form B satisfies

2Ω+ab = ∂aBb − ∂bBa, where Ω+ was given in eq. (2.33). Upon eliminating the auxiliary

fields one finds for Sbulk,

Sbulk =

∫

d2σ dθ D′
(

2DXaD′Xb gab −DXaDXb bab +D′XaD′Xb bab

)

, (2.52)

where g and b are given in eq. (2.32) and the gauge choice for b is such that Ω+ and Ω−
are given by eqs. (2.33) and (2.34). One verifies that the bulk action, eq. (2.52) is indeed

equivalent to the expression given in eq. (B.1). Obviously a detailed comparison of the

boundary term obtained in eq. (2.51) with the generic one in eq. (B.1) requires a careful

analysis of the boundary conditions imposed on the superfields.
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When varying the action eq. (2.49), one needs to take into account that the chiral

fields are constrained, eq. (2.47). Introducing unconstrained fields Λα, Λᾱ, Mα and M ᾱ

we can solve the constraints,

zα = D̄Λα, zᾱ = DΛᾱ,

D′zα = D̄Mα − 2i ∂σΛα, D̄′zᾱ = DM ᾱ − 2i ∂σΛᾱ. (2.53)

Upon varying the action we get the bulk equations of motion and a boundary term,

δS
∣

∣

∣

boundary
=

∫

dτ d2θ
{

δΛα
(

D̄′Vα + i D̄Wα

)

− δΛᾱ
(

D′Vᾱ − iDWᾱ

)

−δwµ
(

Vµ − iWµ

)

+ δwµ̄
(

Vµ̄ + iWµ̄

)

− δlα̃
(

Vα̃ − iWα̃

)

+δl
¯̃α
(

V ¯̃α + iW ¯̃α

)

+ δrµ̃
(

Vµ̃ + iWµ̃

)

− δr
¯̃µ
(

V ¯̃µ − iW ¯̃µ

}

, (2.54)

which should vanish by imposing proper boundary conditions. The expression above can

also be rewritten as,

δS
∣

∣

∣

boundary
= i

∫

dτd2θ
{

δΛα
(

D̄′−D̄
)

Bα+δΛᾱ
(

D′ − D
)

Bᾱ +Ba δX
a + δW

}

, (2.55)

where Xa collectively denotes all superfields and Ba is the locally defined one-form such

that 2Ω+ab = ∂aBb − ∂bBa where Ω+ is defined in eq. (2.33).

Finally, when reducing the action eq. (2.49) to N = 1 superspace, one finds that D̄′lα̃,

D′l ¯̃α, D̄′rµ̃ and D′r ¯̃µ are all auxiliary. It is interesting to note that upon their elimination

one recovers a (matrix) structure which has a very different appearance, though it remains

equivalent of course, from the one we get in the case without boundaries.

3 Boundary conditions

3.1 Unconstrained N = 2 fields and lagrangian and coisotropic branes

3.1.1 Generalities

In this section we will study the case where all fields are a priori unconstrained from

the N = 2 boundary superspace point of view. Put differently: the bulk N = (2, 2)

superfields consist of a number (nt, corresponding to 2nt real directions) of twisted chiral

superfields and a number (ns, corresponding to 4ns real directions) of semi-chiral multiplets.

No chiral N = (2, 2) superfields are present. We denote the unconstrained superfields

collectively as Xa, a ∈ {1, · · · , 2nt + 4ns}. Having that ker(J+ − J−) = ∅ implies the

existence of the non-degenerate two-form Ω(−) = 2 g (J+ − J−)−1 introduced in eq. (2.20).

We will use throughout section (3.1) the expression for b given in eq. (2.23), i.e. b =

−(1/2)Ω(−)(J+ + J−).

Whenever ker(J+−J−) is non-degenerate, one finds that imposing a Dirichlet boundary

condition Y (X) = 0 implies a Neumann boundary condition as well. Indeed, using the

general relation,

D̂Xa =
1

2

(

J+ − J−
)a

bD
′Xb +

1

2

(

J+ + J−
)a

bDX
b, (3.1)
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we get from the Dirichlet boundary condition that,

0 = D̂Y = ∂aY
(

(

J+ − J−
)a

bD
′Xb +

(

J+ + J−
)a

bDX
b
)

, (3.2)

which is a Neumann boundary condition as it relates D′X to DX (see eq. (B.8)). So the

number of Dirichlet boundary conditions one can impose is bounded and can maximally

be nt + 2ns.

As ker(J+ − J−) = ∅, we can rewrite eq. (3.1) as,

gab D
′Xb = Ω

(−)
ab D̂X

b + babDX
b, (3.3)

where we used eq. (2.23). This is very reminiscent of the Neumann boundary conditions

in eq. (B.8). The boundary conditions will allow for the identification of D̂X in terms of

DX.

In the present case — only twisted chiral and semi-chiral superfields – the boundary

term in the variation of the action eq. (2.55) reduces to,

δS
∣

∣

∣

boundary
= i

∫

dτ d2θ
{

Ba(X) δXa + δW (X)
}

, (3.4)

where Ba is a locally defined one-form whose external derivative is precisely the closed

two-form Ω(−), 2Ω
(−)
ab = ∂aBb − ∂bBa, introduced in eq. (2.20). The vanishing of eq. (3.4)

requires appropriate boundary conditions. In what follows we will show that this gives

rise to lagrangian and coisotropic D-branes which generalize lagrangian and coisotropic A-

branes on Kähler manifolds to manifolds which are bihermitian but not necessarily Kähler.

For the necessary background on lagrangian and coisotropic branes on symplectic mani-

folds, see appendix C.2.2.

3.1.2 Lagrangian branes

We first consider the case where we impose the maximal number of Dirichlet boundary

conditions. We make a coordinate transformation such that the Dirichlet conditions are

expressed by Y Â(X) = 0 for Â ∈ {1, · · · , nt + 2ns}, Y Â ∈ R. The remainder of the

coordinates — the world volume coordinates on the D(nt + 2ns)-brane — are written as

σA(X) ∈ R with A ∈ {1, · · · , nt + 2ns}. The boundary term eq. (3.4) vanishes provided a

boundary potential W (σ) can be found which satisfies,

∂W

∂σA
= −Bb

∂Xb

∂σA
. (3.5)

The integrability conditions for these equations state that the pullback of Ω(−) to the

world volume of the brane vanishes. Put differently: we are dealing with a brane which is

lagrangian with respect to the symplectic structure defined by Ω(−).

The Neumann boundary conditions can be written as,

∂Xc

∂σA
gcbD

′Xb =
∂Xc

∂σA
bcd

∂Xd

∂σB
DσB , (3.6)
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where we used eq. (3.3) and the fact that the pullback of Ω(−) to the world volume of the

brane vanishes. Comparing this to the Neumann boundary conditions in eq. (B.8), one

finds that the invariant field strength F is of the form,

Fab = bab = −1

2
Ω(−)

ac (J+ + J−)c b. (3.7)

3.1.3 Maximally coisotropic branes

The other extremal case is when we have Neumann boundary conditions in all directions.

The only way to achieve this is to constrain the fields such that they become chiral on the

boundary,

D̂Xa = Ka
b(X)DXb. (3.8)

From D̂2 = D2 = −i∂/∂τ we obtain integrability conditions which tell us that K is

a(n integrable) complex structure. Going to complex coordinates adapted to the complex

structure K, one immediately finds that the boundary term in the action eq. (3.4) vanishes

provided the one-form Ba +∂aW is holomorphic with respect to K. This in its turn implies

that Ω(−) is a closed holomorphic (2, 0) + (0, 2) two-form with respect to K. As Ω(−) is

non-degenerate, this requires that nt ∈ 2N. So we end up with a space filling brane which

is maximally coisotropic with respect to the symplectic structure Ω(−).

The Neumann boundary conditions follow from eqs. (3.8) and (3.3) and are given by,

gabD
′Xb =

(

Ω(−)
ac K

c
b + bab

)

DXb, (3.9)

where b was given in eq. (2.23). Comparing this to eq. (B.8), we get that,

Fab = Ω(−)
ac K

c
b + bab. (3.10)

As Ω(−) is a (2, 0) + (0, 2) form with respect to the complex structure K, we get that,

Ω̂ab = Ω(−)
ac Kc

b, (3.11)

is a globally defined non-degenerate two-form. Furthermore, using the integrability of the

complex structure K (the vanishing of the Nijenhuis tensor), one shows that it is closed as

well.

Following a strategy very similar to the the discussion around and following eq. (4.41)

in [22], we rewrite the boundary term in the variation of the action eq. (3.4) as,

δS
∣

∣

∣

boundary
= 2i

∫

dτ d2θ δΛa
{

∂[a

(

M|c|K
c
b]

)

− ∂[aMc]K
c
b

}

DXb, (3.12)

where Λ is an unconstrained anti-commuting superfield andMa = Ba+∂aW . This vanishes

provided,

Ω̂ab = ∂a

(

1

2
McK

c
b

)

− ∂b

(

1

2
McK

c
a

)

, (3.13)
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holds. This leads us to the U(1) potential,

Aa =
1

2
(Bb + ∂bW )Kb

a, (3.14)

which is fully consistent with eqs. (2.51), (3.8) and (B.3). From this it follows again that

dF = H, as required. Comparing eq. (3.10) to eq. (3.7), we conclude that we now have a

U(1) bundle with fieldstrength Ω̂ab given in eq. (3.11) and potential Aa, eq. (3.14).

3.1.4 Coisotropic branes

Finally we consider the intermediate case. We use adapted coordinates Y Â(X), σA(X),

σα(X) and σᾱ(X), with Â, A ∈ {1, · · · , k} and α, ᾱ ∈ {1, · · · , nt + 2ns − k}. We impose

the Dirichlet boundary conditions,

Y Â = 0, (3.15)

and we require that the worldvolume coordinates σα are boundary chiral,

D̂σα = +iDσα, D̂σᾱ = −iDσᾱ. (3.16)

The boundary term in the variation of the action — taking into account that we now have

constrained fields on the boundary — vanishes provided,

∂ W

∂σA
= −Bb

∂Xb

∂σA
,

∂

∂σᾱ

(

∂Xc

∂σβ
Bc +

∂ W

∂σβ

)

=
∂

∂σα

(

∂Xc

∂σβ̄
Bc +

∂ W

∂σβ̄

)

= 0,

∂

∂σA

(

∂Xc

∂σβ
Bc +

∂ W

∂σβ

)

=
∂

∂σA

(

∂Xc

∂σβ̄
Bc +

∂W

∂σβ̄

)

= 0. (3.17)

The integrability conditions which follow from this imply that all components of the pull-

back of Ω(−) to the D-brane world volume vanish except for Ω
(−)
αβ and Ω

(−)

ᾱβ̄
and we end up

with a D(2nt +4ns−k)-brane which is coisotropic4 with respect to the symplectic structure

Ω(−). Note that nt +2ns−k must be even. We distinguish three different sets of Neumann

4When no semi-chiral fields are present, this reduces to coisotropic A-branes on Kähler manifolds whose

existence was discovered in [26].
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boundary conditions,

∂Xc

∂σA
gcb

(

∂Xb

∂σB
D′σB +

∂Xb

∂σβ
D′σβ +

∂Xb

∂σβ̄
D′σβ̄

)

=

∂Xc

∂σA
bcd

(

∂Xd

∂σB
DσB +

∂Xd

∂σβ
Dσβ +

∂Xd

∂σβ̄
Dσβ̄

)

,

∂Xc

∂σα
gcb

(

∂Xb

∂σB
D′σB +

∂Xb

∂σβ
D′σβ +

∂Xb

∂σβ̄
D′σβ̄

)

= i
∂Xc

∂σα
Ω

(−)
cd

∂Xd

∂σβ
Dσβ

+
∂Xc

∂σα
bcd

(

∂Xd

∂σB
DσB +

∂Xd

∂σβ
Dσβ +

∂Xd

∂σβ̄
Dσβ̄

)

,

∂Xc

∂σᾱ
gcb

(

∂Xb

∂σB
D′σB +

∂Xb

∂σβ
D′σβ +

∂Xb

∂σβ̄
D′σβ̄

)

= −i ∂X
c

∂σᾱ
Ω

(−)
cd

∂Xd

∂σβ̄
Dσβ̄

+
∂Xc

∂σᾱ
bcd

(

∂Xd

∂σB
DσB +

∂Xd

∂σβ
Dσβ +

∂Xd

∂σβ̄
Dσβ̄

)

.

(3.18)

Comparing these boundary conditions with eq. (B.8), we can read off the flux F , which is

generically of the form,

Fab = bab + Fab, (3.19)

where b was given in eq. (2.23) and the only non-vanishing components of F — the U(1)

field strength — are given by,

Fαβ = iΩ
(−)
αβ , Fᾱβ̄ = −iΩ(−)

ᾱβ̄
. (3.20)

3.2 Chiral N = 2 fields

We now turn to the case where only chiral fields, zα, α ∈ {1, · · · , nc}, are present. The

bulk geometry is Kähler. This case has been thoroughly studied in [22] where as a starting

point the Dirichlet boundary conditions on the unconstrained superfields were taken (see

eq. (2.54)). The result was that through a holomorphic coordinate transformation one

can always find coordinates zα̃, α̃ ∈ {1, · · · , k} and zα̂, α̂ ∈ {k + 1, · · · , nc}, such that

the Dirichlet boundary conditions are simply the statement that zα̂’s are constant. The

worldvolume coordinates are then given by zα̃ and the worldvolume itself is also Kähler.

Put differently, we obtain a type B D2k-brane wrapping around a holomorphic cycle of the

target manifold.

In order that the boundary term in the variation eq. (2.54) vanishes, we need to impose

2k Neumann boundary conditions as well,

Vα̃β̄ D̄′zβ̄ = −iW
α̃ ¯̃β

D̄z
¯̃
β, (3.21)

and complex conjugate. Comparing to eq. (B.8), we find a U(1) field strength with as

non-vanishing elements F
α̃ ¯̃β

= −iW
α̃ ¯̃β

. Note that here — at least at the classical level —

we have no restrictions on the form of the boundary potential W .5

5Superconformal invariance at the quantum level does give additional conditions, see e.g. [27].
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3.3 The general case

We now turn to the most generic case where we have a model in terms of ns semi-chiral

multiplets, nt twisted chiral superfields and nc chiral superfields. This generic case is an

— at least in principle — combination of the two cases discussed below. Since expressions

become more and more involved, we will restrict ourselves to some important remarks

which capture the essence of the ideas involved. We can however already make some

general remarks without going into more detail.

First of all, note that while the dependence of the boundary potential W on the semi-

chiral and twisted chiral coordinates is fixed by the boundary conditions, we are still free to

add some function of the chiral fields to the potential. This reflects the freedom to switch

on an arbitrary U(1) holomorphic bundle in the chiral directions.

Finally we still have that W ≃W +f+ f̄ where f is an arbitrary holomorphic function

of all the boundary chiral fields. This freedom can e.g. be used to make certain isometries

manifest in the boundary potential.

3.3.1 Generalized maximally coisotropic branes

Let us first assume that all twisted chiral and semi-chiral fields obey Neumann conditions. A

first thing to realize is that one can do parts of the analysis in section 3.1 more generally. We

again start from the generally valid eq. (3.1). In this subsection, we denote the collection

of all twisted chiral and semi-chiral fields, and the chiral Neumann fields by Xa. The

Neumann conditions then take the usual form

D′Xa = gabFbcDX
c. (3.22)

Plugging this into (3.1) yields

D̂Xa = Ka
bDX

b, Ka
b =

1

2

(

J+ + J−
)a

b +
1

2

(

J+ − J−
)a

c g
cdFdb. (3.23)

Note that when Xa is a chiral field this simply reduces to the usual chirality condition.

The other components of eq. (3.23) mix chiral and non-chiral fields. The integrability of

these equations requires K to be a complex structure. If ker(J+−J−) = 0 — i.e. in absence

of chiral fields — we can solve for F as a function of K and we recover eq. (3.10). When

only chiral and twisted chiral fields are present, we recover the expression for the complex

structure we presented in eq. (4.47) of [23].

The remainder of the analysis of the generic case is similar to the one in section 4.2.2

of [23] (π+ = 1 case). WhileXa still denotes any superfield (in the Neumann directions), we

write X ã for the chiral superfields and X â for the semi-chiral and twisted chiral superfields.

The vanishing of eq. (2.55) requires,

∂â

(

McK
c
b

)

− ∂b

(

McK
c
â

)

= 2Ω+âcK
c
b, (3.24)

to hold where Ω+ was given in eq. (2.33). Using this we find that Fab = bab +Fab where b is

in the gauge where Ω+ is a closed two-form and F is the U(1) fieldstrength. The explicit ex-
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pressions for the fieldstrength follow from combining eqs. (2.51) and (3.24) which results in,

Fâb̂ =
(

Ω+K)âb̂ ,

Fâb̃ =
(

Ω+K)âb̃ ,

Fαβ̄ = −iWαβ̄ + ∂α

(

1

2
MĉK

ĉ
β̄

)

− ∂β̄

(

1

2
MĉK

ĉ
α

)

,

Fαβ = ∂[α

(

M|ĉ|K
ĉ
β]

)

, Fᾱβ̄ = ∂[ᾱ

(

M|ĉ|K
ĉ
β̄]

)

, (3.25)

where we used the original (complex) notation for the chiral fields again. Note that the

expressions significantly simplify when K has no components which mix the chiral with

the twisted and semi-chiral superfields.

Denoting the number of chiral fields for which we choose Neumann conditions by n̂c,

the conditions of this subsection describe a (2n̂c +2nt +4ns)-dimensional brane. Although

the target space is here no longer symplectic, there is a very natural way in which such

a brane still wraps a coisotropic submanifold, namely in the sense of Poisson geometry.

This is explained in appendix C.3 and further discussed in section 3.4. Hence the branes

described above will be called generalized maximally coisotropic.

3.3.2 Generalized lagrangian branes

Let us now turn to the other extreme, namely impose the maximal number of Dirichlet

conditions on twisted chiral and semi-chiral fields as possible. The discussion surrounding

eq. (3.2) still holds, so that this means that there are an equal number of Dirichlet and

Neumann conditions on these fields.

We denote the chiral fields (in the Neumann directions) by zα and zᾱ and we write

the semi-chiral and twisted chiral superfields collectively as X â. Through a coordinate

transformation we exchange X â for adapted (real) coordinates Y Â(X, z) and σA(X, z),

Â, A ∈ {1, · · · , nt + 2ns}. The Dirichlet boundary conditions are given by Y Â(X, z) = 0

and σA, zα and zᾱ are the worldvolume coordinates.

The vanishing of the boundary term in the variation of the action, eq. (2.55), requires

the existence of a boundary potential W (σ, z) such that,

∂W

∂σA
= −Bb̂

∂X b̂

∂σA
, (3.26)

holds. The integrability condition for this is given by,

∂X ĉ

∂σA
Ω+ĉd̂

∂X d̂

∂σB
= 0. (3.27)

The Neumann boundary conditions assume their standard form, eq. (B.8), with F = b+F .

The torsion potential b is in the gauge where Ω+ = −(g − b)J+ is a closed two-form. The

U(1) fieldstrength follows from the gauge potentials,

Aα = Vα + iWα + iBb̂

∂X b̂

∂zα
,

Aᾱ = Vᾱ − iWᾱ − iBb̂

∂X b̂

∂zᾱ
,

AA = 0. (3.28)
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Denoting the number of chiral fields for which we choose Neumann conditions again

by n̂c, the conditions of this subsection describe a (2n̂c + nt + 2ns)-dimensional brane.

Such a brane wraps a minimally6 coisotropic submanifold — again in the sense of Poisson

geometry — as will be explained in the next section. We therefore refer to it as a generalized

lagrangian brane. Notice that it however need no longer be half-dimensional because of

the chiral directions.

3.4 Embedding in generalized complex geometry

In flux compactification scenarios, the presence of non-trivial fluxes along cycles of the

internal manifold forces the internal manifold to no longer be Calabi-Yau. A good language

for capturing some essential features of the required internal geometry was proposed by

Hitchin [28] and subsequently developed by Gualtieri [29]. Generalized complex geometry

or GCG, as it is called, contains both complex and symplectic geometry as special cases.

As such it turns out to be the right setting for the formulation of what the Calabi-Yau

condition generalizes to in the presence of fluxes. Perhaps not surprisingly, this is called the

(weak) generalized Calabi-Yau condition [28]. Since in this paper we are not yet concerned

with conformal invariance on the worldsheet, we have no need to discuss all conditions that

go into the generalized Calabi-Yau requirement. Demanding N = (2, 2) supersymmetry on

the worldsheet nevertheless has a very nice interpretation in the language of GCG. Ever

since the work of [4] we know that in the presence of NSNS-flux (but in the absence of RR-

flux and for constant dilaton) the relevant target space geometry is a bihermitian geometry.

It was however shown in [29] that this is equivalent to what is called generalized Kähler

geometry in the GCG approach. In appendix C some basic constructions in GCG — as

well its limiting cases of complex and symplectic geometry — are discussed, with special

emphasis on certain natural classes of submanifolds, i.e. generalized complex, complex and

coisotropic submanifolds, respectively. In [29] (see also [30]) it was shown that both A

branes (on symplectic manifolds) and B branes (on complex manifolds) can be understood

as being generalized complex submanifolds. In this section and appendix C.2 we rederive

some of these results, flesh them out a bit and find more clues for the relevance of generalized

complex submanifolds in describing D-branes on generic generalized Kähler manifolds by

comparing our findings with the σ-model results of the previous section.

3.4.1 Generalized complex submanifols of bihermitian manifolds

In appendix C, eq. (C.7), we present the pair of commuting H-twisted generalized complex

structures (J+,J−) comprising the generalized Kähler structure associated with the data

(g,H, J+, J−) of a bihermitian geometry. As we discussed before, sending J− to −J−
interchanges chiral and twisted chiral fields in the local parameterization of the manifold.

Since this also interchanges J+ and J− it is sufficient to focus on one of them when

analyzing the conditions for a generalized complex submanifold. In our conventions it

turns out that the natural choice is J+ which from now on we simply call J .

6Here we mean minimal in the non-chiral directions. Any number of chiral fields can be chosen to obey

Neumann boundary conditions without affecting the minimality we refer to here.
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Before we proceed, it will be useful to introduce some new notation. We combine the

complex structures J± into the combinations7

J(±) =
1

2
(J+ ± J−). (3.29)

From the non-degenerate two-forms, ω± = −gJ±, and more precisely their inverses ω−1
± =

J± g−1, we can then define two Poisson structures [31]

Π(±) = J(±)g
−1 =

1

2
(ω−1

+ ± ω−1
− ). (3.30)

For a brief discussion of some relevant facts about Poisson structures, see appendix C.3.

When one of these Poisson bi-vectors is invertible, the inverse is a symplectic structure,

Ω(±) ≡ Π−1
(±) = gJ−1

(±). (3.31)

As we mentioned before, from these symplectic structures we can define a symmetric 2-

covector and a 2-form in a natural way,

g(±) = Ω(±)J(±), (3.32)

b(±) = −Ω(±)J(∓). (3.33)

For backgrounds for which Π(±) is invertible, g(±) and b(±) are precisely the metric and

b-field of the bihermitian geometry respectively. Notice that using this notation, the addi-

tional complex structure K in eq. (3.23) can also be written as,8

K = J(+) + Π(−)F = Π(+)g + Π(−)F . (3.34)

Now consider a (generalized) submanifold (N ,F) of a generalized Kähler manifold

(M,J±,H) in the sense discussed in appendix C, i.e in particular dF = H|N . Such a

submanifold is called generalized complex if its generalized tangent bundle, τ F
N defined in

eq. (C.10), is stable under the following H-twisted generalized complex structure

J =

(

J(+) Π(−)

gJ(−) −J t
(+)

)

, (3.35)

which is simply a rewriting of J+ in eq. (C.7). Requiring J to stabilize τ F
N , we get the

following conditions,

Π(−)(AnnTN ) ⊂ TN , (3.36)

(J(+) + Π(−)F)(TN ) ⊂ TN , (3.37)
(

gJ(−) − J t
(+)F − FJ(+) −FΠ(−)F

)

(TN ) ⊂ AnnTN , (3.38)

where AnnTN is defined in eq. (C.13). We now distinguish the following, gradually more

complicated cases:

7In this section, it is more appropriate to use a slightly more abstract notation, as is explained in

footnote 15 of appendix C.
8To be precise, the objects in this equation should be pulled back in the proper way to the world-volume,

as will be discussed below.
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1. J(−) = 0

When J(−) = 0 — so that J(+) = J+ = J− gives rise to a Kähler structure —

condition (3.36) becomes empty, while the other two reduce to the conditions for a B

brane in a Kähler manifold with complex structure J+, as is reviewed in appendix C.

2. Π(−) is invertible

As explained before, this implies that Π−1
(−) = Ω(−) is symplectic. Condition (3.36)

then reduces to the requirement that N be coisotropic with respect to Ω(−). Indeed,

in this case we have that Π(−)(AnnTN ) = T⊥
N , the symplectic complement introduced

in eq. (C.12).

Condition (3.37) is most straightforwardly analyzed by first introducing F = F −
b(−) = F + Ω(−)J(+). In terms of F , the condition becomes Π(−)(ιXF ) = Π(−)FX ∈
TN . This condition was analyzed in subsection C.2.2 and the conclusion is that F

is zero on T⊥
N and descends to a two-form on TN/T⊥

N . This implies that on T⊥
N ,

F = b(−). In particular, on a lagrangian submanifold F = b(−) on the whole of N ,

which agrees with (3.7).

Multiplying (3.38) by Π(−) from the left and using simple identities like J2
(+) +J2

(−) =

−1 and Π(−)J
t
(+) = J(+)Π(−), we see that it implies

(J(+) + Π(−)F)2 = −1 on TN /T⊥
N . (3.39)

It follows that K = J(+) + Π(−)F is an almost complex structure on TN /T⊥
N . This is

precisely the complex structureK arising from the σ-model, as follows from eq. (3.10).

Indeed, since Π(−) is invertible, we can solve for F ,

F = Ω(−)(K − J(+)) (3.40)

= Ω(−)K + b(−), (3.41)

which is precisely eq. (3.10).

These results are actually nothing but the already known conditions for a coisotropic

brane on a symplectic manifold with three-form fluxH = db(−), albeit stated more ex-

plicitly than is usually done. In fact, the above conclusions could have been obtained

more straightforwardly by first performing a b-transform of (3.35) with b = −b(−).

As discussed in appendix C, the resulting generalized complex structure Jb = ebJ e−b

is untwisted since H + db = H − db(−) = 0. The resulting Jb actually turns out to

be of canonical symplectic form, eq. (C.8) with Ω = Ω(−). All the above results then

follow from the results for a canonical generalized complex structure for a symplectic

manifold, reviewed in subsection C.2.2. For instance, the extra complex structure is

K = Π(−)F = Π(−)(F − b(−)) = J(+) + Π(−)F as before.

3. No semi-chiral superfields

Even when Π(−) is not invertible, condition eq. (3.36) is a coisotropy condition in

the sense discussed in appendix C.3 in the context of Poisson geometry. Indeed,

while isotropic submanifolds have no natural generalization for (non-symplectic)
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Poisson structures, coisotropic submanifolds do. While mathematicians would call

such submanifolds coisotropic in the generic case, in order to make the distinction

clear, we speak of generalized coisotropic once the Poisson structure in question is

not invertible.

The simplest non-symplectic case is the one where no semi-chiral fields are present.

Since in this case, we can compute things quite explicitly, let us try to get some

intuition for the general case by first considering this one. We write the tangent space

of M at some point x as a sum of a chiral and a twisted chiral part, TM = TC ⊕ TT .

Denoting the canonical (diagonal) complex structure by J , and ωc,t = −gc,tJ , then

we get the Poisson structures (we also use that the metric has a block diagonal form

with blocks gc and gt)

Π(+) =

(

ω−1
c 0

0 0

)

, Π(−) =

(

0 0

0 ω−1
t

)

. (3.42)

This implies that a lot of the analysis splits up in conditions on TC and TT seperately.

Using the language of symplectic foliations introduced in appendix C.3, a symplectic

leave associated to Π(±) is denoted by S±. At a point x, this implies that S+
x = TC

and S−
x = TT . Now according to eq. (C.20), Π(−)(AnnTN ) = T⊥

N ,T , the symplectic

complement of TN ,T ≡ TN ∩ S−
x in S−

x , where the symplectic structure is the inverse

of the restriction of Π(−) to S−
x = TT , namely ωt.

Eq. (3.36) then implies that T⊥
N ,T ⊂ TN . In fact, because of the block diagonal

structure of Π(−), TN ,T should be a coisotropic subspace of TT .

Note however that F can a priori still have mixed indices. Condition (3.37) on one

hand says J(TN ,C) ⊂ TN ,C , where TN ,C = TN ∩ TC , so that the chiral directions of N
are ‘holomorphic’. The term involving F however reduces to a condition on TN ,T .

It implies that ιXF = 0 for X ∈ T⊥
N ,T , the symplectic complement of TN ,T for ωt

restricted to TT . Note that, since this condition follows from restricting Π(−) to TT ,

this says nothing about components of F with one leg in T⊥
N ,T and one along TN ,C .

Indeed such components were shown to be non-zero in [22].

Finally, eq. (3.38) requires more care. First of all, multiplying it by Π(−), we

get as before that K = J(+) + Π(−)F is a complex structure on TN /T⊥
N ,T . This

is indeed the object we called K in [22]. However, since Π(−) is not invertible,

multiplying eq. (3.38) by Π(−) yields only part of the necessary conditions. The

remaining conditions are obtained by multiplying eq. (3.38) by Π(+). This yields

a Π(+)(AnnTN ) on the right hand side of the inclusion. This equals (TN ,C)⊥,

where now ωc on TC has to be used. Since TN ,C is a symplectic subspace of TC (see

appendix C.2), its symplectic complement is zero when all chiral fields are taken

to be Neumann. Restricting to this case for simplicity (and using the fact that

J(+)J(−) = 0 in absence of semi-chiral fields), we find

J(+)Π(+)F + Π(+)FJ(+) + Π(+)FΠ(−)F = 0 on TN . (3.43)
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This equation generalizes the holomorphicity condition for the U(1) flux on a B

brane, showing that for instance the field strengths along the chiral directions are

generically no longer holomorphic. Indeed, letting α and β run over chiral, and µ

and ν over twisted chiral fields, one of the equations implied by eq. (3.43) is the

following condition on Fαβ ,

2Fαβ + Fαµg
µν̄Fν̄β −Fαµ̄g

µ̄νFνβ = 0. (3.44)

4. General case

Here again, we use the notation S± for the symplectic leaves associated to Π(±).

Writing locally TM = TC ⊕ TT ⊕ TS where the last term now adds the semi-chiral

fields, we find that S+
x = TC ⊕ TS and S−

x = TT ⊕ TS . Let us denote S−
x ∩ TN by S−

N
in the following. Condition (3.36) then states that

(

S−
N
)⊥ ⊂ TN , (3.45)

where the symplectic complement is with respect to the inverse of the restriction

of Π(−) to S−. This is indeed essentially the structure that was found by analyzing

boundary conditions in the σ-model. Of course much more remains to be analyzed,

especially concerning the invariant field strength F on the brane.9 Let us simply note

here that one can of course still multiply eq. (3.38) by Π(−) from the right to obtain

K2 = −1 on TN /
(

S−
N
)⊥
, (3.46)

where K is still of the form (3.34). This indeed agrees with eq. (3.23).

4 Duality transformations

InN = (2, 2) supersymmetric models there exists a variety of duality transformations which

allows one to change the nature of the superfields. These duality transformations fall into

two categories: those which need an isometry and those which do not. The former are what

is usually understood as a T-duality transformation while the latter are a consequence of

the constraints which are imposed on N = (2, 2) superfields. A complete catalogue of

duality transformations in N = (2, 2) superspace was obtained in [34]. Here we generalize

this to the situation where boundaries are present. The main subtlety consists in finding

the proper boundary terms in the first order action which guarantee that the boundary

conditions consistently pass through the duality transformation.

4.1 Dualities without an isometry

The basic idea of dualities without an isometry is to impose the constraints on the super-

fields through Lagrange multipliers (unconstrained superfields). In a first order formulation

9As far as the authors are aware, the most general analysis has so far not appeared in the literature

in the amount of detail required for comparison with σ-model results. An equation similar and related to

eq. (3.38) has been studied in [32, 33] for slightly different, but ultimately related reasons.
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one takes the original fields as unconstrained superfields. Integrating over the Lagrange

multipliers brings us back to the original model. However, if we integrate over the original

unconstrained fields we get the dual formulation. In this way one has the following dual

combinations:

• Four dual semi-chiral formulations.

• Twisted chiral field ↔ twisted complex linear superfield.

• Chiral field ↔ complex linear superfield.

In the present paper we briefly introduce these duality transformations and postpone a

detailed analysis of them — which requires a careful treatment of the boundary conditions

— to a forthcoming paper.

4.1.1 The four dual semi-chiral formulations

The starting point is the first order action,

S = −
∫

d2σ d2θ d2θ′
(

V (l, l̄, r, r̄, · · · ) − Λ+ D̄+l − Λ̄+ D+l̄ − Λ− D̄−r − Λ̄− D−r̄
)

+i

∫

dτ d2θ
(

W (l, l̄, r, r̄, · · · ) + iΛ+ D̄+l − iΛ̄+ D+l̄ − iΛ− D̄−r + iΛ̄− D−r̄
)

, (4.1)

where l, l̄, r and r̄ are unconstrained bosonic complex superfields and Λ± and Λ̄± are

unconstrained complex fermionic superfields. Integrating over the Lagrange multipliers

constrains l and r to form a semi-chiral multiplet. Upon partial integration we can rewrite

the action in three ways,

S = −
∫

d2σ d2θ d2θ′
(

V (l, l̄, r, r̄, · · · ) − l l′ − l̄ l̄′ − Λ− D̄−r − Λ̄− D−r̄
)

+i

∫

dτ d2θ
(

W (l, l̄, r, r̄, · · · ) + i l l′ − i l̄ l̄′ − iΛ− D̄−r + iΛ̄− D−r̄
)

= −
∫

d2σ d2θ d2θ′
(

V (l, l̄, r, r̄, · · · ) − Λ+ D̄+l − Λ̄+ D+l̄ − r r′ − r̄ r̄′
)

+i

∫

dτ d2θ
(

W (l, l̄, r, r̄, · · · ) + iΛ+ D̄+l − iΛ̄+ D+l̄ − i r r′ + i r̄ r̄′
)

= −
∫

d2σ d2θ d2θ′
(

V (l, l̄, r, r̄, · · · ) − l l′ − l̄ l̄′ − r r′ − r̄ r̄′
)

+i

∫

dτ d2θ
(

W (l, l̄, r, r̄, · · · ) + i l l′ − i l̄ l̄′ − i r r′ + i r̄ r̄′
)

, (4.2)

where we introduced the notation l′ = D̄+Λ+, l̄′ = D+Λ̄+, r′ = D̄−Λ−, r̄′ = D−Λ̄−.

Integrating over the unconstrained fields (l, l̄,Λ−, Λ̄−), (Λ+, Λ̄+, r, r̄) or (l, l̄, r, r̄) resp. yields

three dual formulations of the model.
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4.1.2 The duality between twisted chiral and twisted complex linear fields

This duality transformation is fully determined by the following two equivalent versions of

the first order action,

S = −
∫

d2σ d2θ d2θ′
(

V (w, w̄, · · · ) − Λ+D̄+w − Λ̄−D−w − Λ̄+D+w̄ − Λ−D̄−w̄
)

+i

∫

dτ d2θ
(

W (w, w̄, · · · ) + iΛ+D̄+w + i Λ̄−D−w − i Λ̄+D+w̄ − iΛ−D̄−w̄
)

= −
∫

d2σ d2θ d2θ′
(

V (w, w̄, · · · ) − w x− w̄ x̄
)

+i

∫

dτ d2θ
(

W (w, w̄, · · · ) + i w x− i w̄ x̄
)

, (4.3)

where Λ± are unconstrained complex fermionic superfields and we wrote x ≡ D̄+Λ++D−Λ̄−

and x̄ ≡ D+Λ̄+ + D̄−Λ−. We identify x as a twisted complex linear superfield defined by

the constraints quadratic in the derivatives: D̄+D−x = D+D̄−x̄ = 0 [35]. Integrating over

Λ± and Λ̄± constrains w and w̄ to be twisted chiral. If on the other hand we first integrate

over the unconstrained fields w and w̄, we end up with the dual description where the

dependence on a twisted chiral field was exchanged for one on a twisted complex linear

superfield.

4.1.3 The duality between chiral and complex linear fields

Starting from the potentials V (z, z̄, · · · ) and W (z, z̄, · · · ), where z is a chiral field, we write

a first order action,

S = −
∫

d2σ d2θ d2θ′
(

V (z, z̄, · · · ) − Λ+D̄+z − Λ−D̄−z − Λ̄+D+z̄ − Λ̄−D−z̄
)

+i

∫

dτ d2θ
(

W (z, z̄, · · · ) + iΛ+D̄+z − iΛ−D̄−z − i Λ̄+D+z̄ + i Λ̄−D−z̄
)

, (4.4)

where we now take z and z̄ as unconstrained superfields and Λ± and Λ̄± are (unconstrained)

Lagrange multipliers. Varying the Lagrange multipliers gives the original model. Upon

partial integration we can rewrite the first order action as,

S = −
∫

d2σ d2θ d2θ′
(

V (z, z̄, · · · ) − z x− z̄ x̄
)

+i

∫

dτ d2θ
(

W (z, z̄, · · · ) + i z
(

D̄+Λ+ − D̄−Λ−)− i z̄
(

D+Λ̄+ − D−Λ̄−), (4.5)

where x ≡ D̄+Λ++D̄−Λ− is a complex linear superfield defined by the constraints D̄+D̄−x =

D+D−x̄ = 0 [36, 37]. The treatment of the boundary term in the action and the boundary

conditions requires special care. We postpone this discussion to a future paper.

4.2 Dualities with an isometry

The main idea here is to gauge the isometry and through Lagrange multipliers enforce the

gauge fields to be pure gauge. Integrating over the Lagrange multipliers brings us back

to the original model while integrating over the gauge fields results in the dual model.

The treatment of the boundary conditions through the duality transformation requires

special care.
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4.2.1 The duality between a pair of chiral and twisted chiral fields and a

semi-chiral multiplet

The starting point is a bulk potential of the form V
(

z + z̄, w + w̄, i(z − z̄ − w + w̄), · · ·
)

and a boundary potential W
(

z+ z̄, w+ w̄, i(z − z̄−w+ w̄), · · ·
)

. This clearly exhibits the

isometry z → z + i a, w → w + i a, with a an arbitrary real constant.10 The first order

action is,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ , · · ·
)

+ Λ+D̄+

(

Y − Ỹ − i Ŷ
)

+ Λ̄+D+

(

Y − Ỹ + i Ŷ
)

−Λ−D̄−
(

Y + Ỹ − i Ŷ
)

− Λ̄−D−
(

Y + Ỹ + i Ŷ
)

)

+i

∫

dτ d2θ
(

W
(

Y, Ỹ , Ŷ , · · ·
)

− iΛ+D̄+

(

Y − Ỹ − i Ŷ
)

+ i Λ̄+D+

(

Y − Ỹ + i Ŷ
)

−iΛ−D̄−
(

Y + Ỹ − i Ŷ
)

+ i Λ̄−D−
(

Y + Ỹ + i Ŷ
)

)

, (4.6)

where Λ± and Λ̄± are unconstrained complex fermionic superfields and Y , Ỹ and Ŷ are

unconstrained real bosonic superfields. Integrating over the Lagrange multipliers Λ± and

Λ̄± returns us to the original model. Upon partial integration we rewrite the first order

action as,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ , · · ·
)

+ Y
(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ
(

W
(

Y, Ỹ , Ŷ , · · ·
)

− i Y
(

l − l̄ + r − r̄
)

+i Ỹ
(

l − l̄ − r + r̄
)

− Ŷ
(

l + l̄ + r + r̄
)

)

, (4.7)

where we introduced the semi-chiral multiplet l = D̄+Λ+, l̄ = D+Λ̄+, r = D̄−Λ− and

r̄ = D−Λ̄−. Integrating over Y , Ỹ and Ŷ yields the dual model.

Let us illustrate this with a simple example. Our starting point is a model on T 4

parameterized by a twisted chiral, w, and a chiral, z, superfield. We take for the generalized

Kähler potential,

V = −1

4

(

z + z̄ −w − w̄
)2

+
1

4

(

z − z̄ − w + w̄
)2

+
(

z + z̄
)2
. (4.8)

We consider a D3-brane whose location is fixed by the Dirichlet boundary condition,

i
(

z − z̄ − w + w̄) = i(1 − a)
(

z − z̄
)

, (4.9)

where a ∈ Q. Using the methods of section 3 one finds the boundary potential,

W =
i

2

(

z − z̄ − w + w̄
)(

w + w̄), (4.10)

to which we could have added an arbitrary real function of z and z̄. When dualizing this

to a semi-chiral model, we have to distinguish two cases: a = 1 and a 6= 1.

10While this duality transformation was already found in [34], the elucidation of the underlying gauge

structure is rather recent [38]-[41].
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Consider the case where a = 1. In that case eq. (4.9) implies a Dirichlet boundary

condition for the gauge fields: Ŷ = 0 and the boundary potential W vanishes. The first

order action eq. (4.7) becomes,

S = −
∫

d2σ d2θ d2θ′
(

− 1

4

(

Y − Ỹ
)2 − 1

4
Ŷ 2 + Y 2 + Y

(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ
(

− i Y
(

l − l̄ + r − r̄
)

+ i Ỹ
(

l − l̄ − r + r̄
)

)

. (4.11)

From the bulk equations of motion we get,

Y = r + r̄,

Ỹ = −2
(

l + l̄
)

−
(

r + r̄
)

,

Ŷ = −2i
(

l − l̄ − r + r̄
)

. (4.12)

Note that we already had a Dirichlet boundary condition Ŷ = 0 which is reproduced by

varying Ỹ in the boundary term in the first order action eq. (4.11). Varying Y in the

boundary term yields a second Dirichlet boundary condition which together with the first

one imply,

l = l̄, r = r̄. (4.13)

So in the dual model we obtain a generalized lagrangian D2-brane whose location is specified

by eq. (4.13), the boundary potential vanishes and the bulk potential is given by,

Vdual =
(

l + l̄ + r + r̄
)2 −

(

l − l̄ − r + r̄
)2 −

(

r + r̄
)2
. (4.14)

We now consider the case a 6= 0 where for simplicity we choose a = 0. Eq. (4.9) results

in the boundary conditions,

D̄
(

Ŷ + iY ) = D
(

Ŷ − iY ) = 0, (4.15)

which implies that,

Z1 ≡ Ŷ + iY = −2i l + 2i l̄ + 3i r − i r̄, (4.16)

is a boundary chiral field! With this, the first order action eq. (4.7) becomes,

S = −
∫

d2σ d2θ d2θ′
(

− 1

4

(

Y − Ỹ
)2 − 1

4
Ŷ 2 + Y 2 + Y

(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ

(

1

4

(

Z1 + Z̄ 1̄
)

Ỹ + i Ỹ
(

l − l̄ − r + r̄
)

−Z1
(

l + r
)

− Z̄ 1̄
(

l̄ + r̄
)

)

. (4.17)

Obviously the bulk equations of motion are again given by eq. (4.12). Varying Ỹ in the

boundary term of the first order action eq. (4.17) gives an expression compatible with the
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bulk equations of motion eq. (4.12). Varying Z1 and Z̄ 1̄ — taking into account that they

are constrained boundary superfields — gives,

D̄

(

1

4
Ỹ − l − r

)

= D

(

1

4
Ỹ − l̄ − r̄

)

= 0, (4.18)

implying the existence of a second boundary chiral field Z2,

Z2 ≡ 1

4
Ỹ − l − r = −3

2
l − 1

2
l̄ − 5

4
r − 1

4
r̄. (4.19)

So we end up with a maximally coisotropic brane on T 4. Labelling rows and columns as

(l, l̄, r, r̄), we get for the complex structure K,

K =
1

4











6i −2i −i 3i

2i −6i −3i i

−2i 6i 6i −2i

−6i 2i 2i −6i











. (4.20)

The bulk potential is given by eq. (4.14) and the boundary potential is,

Wdual = −i
(

l − l̄ − r + r̄
)(

2(l + l̄) + (r + r̄)
)

. (4.21)

In terms of the boundary chiral fields this becomes,

Wdual = −1

4

(

Z1 + Z̄ 1̄
)

(

Z2 + Z̄ 2̄ − i

4
(Z1 − Z̄ 1̄)

)

= −1

4

(

Z1Z̄ 2̄ + Z̄ 1̄Z2
)

, (4.22)

where in the last step we discarded total derivative terms.

We now focus on the inverse transformation. Starting point is a bulk potential of the

form V
(

l+l̄, r+r̄, i(l−l̄−r+r̄), · · ·
)

and a boundary potentialW
(

l+l̄, r+r̄, i(l−l̄−r+r̄), · · ·
)

.

The basic relation is given by,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ , · · ·
)

+ i uD̄+D̄−
(

Y − Ỹ − iŶ
)

+i ūD+D−
(

Y − Ỹ + iŶ
)

− i vD̄+D−
(

Y + Ỹ − iŶ
)

− i v̄D+D̄−
(

Y + Ỹ + iŶ
)

)

+i

∫

dτ d2θ
(

W
(

Y, Ỹ , Ŷ , · · ·
)

− 1

2
D̄′uD̄′(Y − Ỹ − iŶ

)

+
1

2
D′ūD′(Y − Ỹ + iŶ

)

−v D̄+D−
(

Y + Ỹ − iŶ
)

+ v̄D+D̄−
(

Y + Ỹ + iŶ
)

)

= −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ , · · ·
)

+ Y
(

z + z̄ − w − w̄
)

− Ỹ
(

z + z̄ + w + w̄
)

−i Ŷ
(

z − z̄ − w + w̄
)

)

+ i

∫

dτ d2θ
(

W
(

Y, Ỹ , Ŷ , · · ·
)

+i
(

Y + Ỹ
)(

w − w̄
)

+ Ŷ
(

w + w̄
)

)

, (4.23)

where u, v ∈ C and Y, Ỹ , Ŷ ∈ R are unconstrained superfields and where we defined

z = iD̄+D̄−u, z̄ = iD+D−ū, w = iD̄+D−v and w̄ = iD+D̄−v̄. When using this, special

attention must be given to the boundary terms proportional to D̄′u and D′ū.
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Again we will illustrate this with a simple example. Indeed we will dualize the la-

grangian D2- and the coisotropic D4-brane obtained above back to a D3-brane in terms of

a twisted chiral and a chiral field. The bulk potential we start from is given by eq. (4.14).

For the D2-brane we consider the Dirichlet boundary conditions eq. (4.13) and a vanishing

boundary potential. The Dirichlet boundary condition imply Ŷ = 0 on the boundary.

Using the first part of relation eq. (4.23), we find the first order action to be,

S = −
∫

d2σ d2θ d2θ′
(

(

Y + Ỹ
)2

+ Ŷ 2 − Ỹ 2 + i uD̄+D̄−
(

Y − Ỹ − iŶ
)

+i ūD+D−
(

Y − Ỹ + iŶ
)

− i vD̄+D−
(

Y + Ỹ − iŶ
)

− i v̄D+D̄−
(

Y + Ỹ + iŶ
)

)

+i

∫

dτ d2θ
(

− v D̄+D−
(

Y + Ỹ − iŶ
)

+ v̄D+D̄−
(

Y + Ỹ + iŶ
)

−1

2
D̄′u

(

D̄′(Y − Ỹ − iŶ
)

+ D̄
(

Y + Ỹ
)

)

+
1

2
D′ū

(

D′(Y − Ỹ + iŶ
)

+ D
(

Y + Ỹ
)

))

,

(4.24)

where we added two extra terms to the boundary term proportional to D̄′u and D′ū such

that the variation of D̄′u and D′ū yields expressions compatible with the boundary condi-

tions and the constraints eq. (2.47). Integrating this action by parts yields,

S = −
∫

d2σ d2θ d2θ′
(

(

Y + Ỹ
)2

+ Ŷ 2 − Ỹ 2 + Y
(

z + z̄ − w − w̄
)

−Ỹ
(

z + z̄ + w + w̄
)

− i Ŷ
(

z − z̄ − w + w̄
)

)

+i

∫

dτ d2θ
(

+ i
(

Y + Ỹ
)(

w − w̄ − z + z̄
)

)

, (4.25)

where the boundary term containing the chiral field z, z̄ results from the additional terms

added in the first order action we started from. We used the boundary condition Ŷ = 0

as well.

The bulk equations of motion give,

Y =
1

2

(

z + z̄ + w + w̄
)

,

Ỹ = −
(

z + z̄
)

,

Ŷ =
i

2

(

z − z̄ − w + w̄
)

. (4.26)

Inserting these equations of motion back into the bulk part of the action eq. (4.25) repro-

duces the generalized Kähler potential eq. (4.8). The Dirichlet boundary condition Ŷ = 0

implies — using eq. (4.26) — the Dirichlet boundary condition in eq. (4.9) with a = 1.

So we do recover the D3-brane discussed previously. Varying either Y or Ỹ in eq. (4.25)

yields an expression which vanishes by virtue of the Dirichlet boundary condition. As a

consequence the boundary term in the dual action vanishes as expected.

Next, we consider the coisotropic D4-brane constructed above, given by the Neumann

boundary conditions,

D̄
(

− 2i l + 2i l̄ + 3i r − i r̄
)

= 0, D
(

− 2i l + 2i l̄ + i r − 3i r̄
)

= 0, (4.27)

D̄
(

− 6l − 2l̄ − 5r − r̄
)

= 0, D
(

− 2l − 6l̄ − r − 5r̄
)

= 0, (4.28)
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and the boundary potential eq. (4.21). The Neumann boundary conditions eq. (4.27) imply

that Ỹ and Ŷ together form a chiral boundary field,

D̄

(

Ŷ − i

2
Ỹ

)

= D
(

Ŷ +
i

2
Ỹ
)

= 0. (4.29)

The first order action reads,

S = −
∫

d2σ d2θ d2θ′
(

(

Y + Ỹ
)2

+ Ŷ 2 − Ỹ 2 + i uD̄+D̄−
(

Y − Ỹ − iŶ
)

+i ūD+D−
(

Y − Ỹ + iŶ
)

− i vD̄+D−
(

Y + Ỹ − iŶ
)

− i v̄D+D̄−
(

Y + Ỹ + iŶ
)

)

+i

∫

dτ d2θ
(

− Ŷ
(

2Y + Ỹ
)

− 1

2
D̄′u

(

D̄′(Y − Ỹ − iŶ
)

− D̄
(

Y + Ỹ + i Ŷ
)

)

+
1

2
D′ū

(

D′(Y − Ỹ + iŶ
)

− D
(

Y + Ỹ − i Ŷ
)

)

− v D̄+D−
(

Y + Ỹ − iŶ
)

+v̄D+D̄−
(

Y + Ỹ + iŶ
)

)

, (4.30)

where once more we inserted two additional terms in the boundary term such that the vari-

ation of D̄′u and D′ū gives expressions consistent with the Neumann boundary conditions

and the constraints eq. (2.47). After integrating this action by parts, we find the following

action,

S = −
∫

d2σ d2θ d2θ′
(

(

Y + Ỹ
)2

+ Ŷ 2 − Ỹ 2 + Y
(

z + z̄ − w − w̄
)

−Ỹ
(

z + z̄ + w + w̄
)

− i Ŷ
(

z − z̄ − w + w̄
)

)

+i

∫

dτ d2θ
(

− Ŷ
(

2Y + Ỹ
)

+ i
(

Y + Ỹ
)(

w − w̄ + z − z̄
)

+ Ŷ
(

w + w̄ − z − z̄
)

)

.

(4.31)

The bulk analysis is similar to the previous case, with equations of motion given in

eqs. (4.26). Varying the gauge field Y in the boundary term and imposing the equation of

motion for Ŷ yields the Dirichlet boundary condition,

i
(

w − w̄
)

= 0, (4.32)

which is indeed the boundary condition eq. (4.9) for a = 0. When varying Ỹ and Ŷ in the

boundary term, one should take into account that they are constrained at the boundary

(see eq. (4.29)). Doing so correctly, one recovers again the Dirichlet boundary condition

eq. (4.32).

4.2.2 The duality between a chiral and a twisted chiral field

Starting from a potential of the form V (z + z̄, · · · ) and W (z + z̄, · · · ), we write the first

order action,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, · · ·
)

− i u D̄+D−Y − i ūD+D̄−Y
)

+i

∫

dτ d2θ
(

W
(

Y, · · ·
)

− u D̄+D−Y + ūD+D̄−Y
)

. (4.33)
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Integrating over the complex unconstrained Lagrange multipliers u and ū brings us back

to the original model. Upon integrating by parts one gets,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, · · ·
)

− Y
(

w + w̄
)

)

+i

∫

dτ d2θ
(

W
(

Y, · · ·
)

+ i Y
(

w − w̄
)

)

, (4.34)

where we introduced the twisted chiral fields w = i D̄+D−u and w̄ = iD+D̄−ū. Integrating

over the unconstrained gauge field Y gives us the dual model in terms of a twisted chiral

field w.

We illustrate this with a simple example, a two-torus parameterized by a chiral field

with Kähler potential V = (z + z̄)2/2. Either D0- or D2-brane configurations are allowed.

Let us start with a D0-brane. We take the Dirichlet boundary condition z = (a+ i b)/2

with a, b ∈ R and constant. The boundary potential vanishes. The first order action

is given in eq. (4.33) where the gauge field Y satisfies the boundary condition Y = a.

Dualizing the model using eq. (4.34) we obtain the bulk equation of motion Y = w + w̄

which — using the boundary condition for Y — gives us the boundary condition for the

twisted chiral field: w+ w̄ = a. Performing the duality transformation gives the potentials,

Vdual = −1

2

(

w + w̄
)2
, Wdual = i a

(

w − w̄
)

. (4.35)

So we end up with a lagrangian D1-brane whose position is determined by w + w̄ = a.

We now turn to the D2-brane. We still have the bulk potential V = (z + z̄)2/2 but

we can now allow for a boundary potential as well, which for simplicity we choose as

F (z + z̄)2/2 with F ∈ R and constant. The boundary conditions are fully Neumann and

explicitly given by,

D′z = i F Dz, D̄′z̄ = −i F D̄z̄. (4.36)

Once more our starting point is the first order action eq. (4.33) where the gauge field Y

satisfies the boundary conditions D′Y = i F DY and D̄′Y = −i F D̄Y . Using eq. (4.34) we

obtain the dual model. The bulk equation of motion gives Y = w + w̄ which combined

with the boundary conditions for Y results in the boundary conditions D
(

− i(w − w̄) −
F (w + w̄)

)

= D̄
(

− i(w − w̄) − F (w + w̄)
)

= 0 where we used eq. (2.46). These equations

are equivalent to a single Dirichlet boundary condition,

− i
(

w − w̄
)

= F
(

w + w̄
)

. (4.37)

The potentials for the dual model are given by,

Vdual = −1

2

(

w + w̄
)2
, Wdual = −1

2
F
(

w + w̄
)2
. (4.38)

As was to be expected we find a lagrangian D1-brane whose position is determined by

eq. (4.37).
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The inverse transformation starts from potentials of the form V (w+w̄, · · · ) and W (w+

w̄, · · · ). One has

−
∫

d2σ d2θ d2θ′
(

V
(

Ỹ , · · ·
)

− i u D̄+D̄−Ỹ − i ūD+D−Ỹ
)

+i

∫

dτ d2θ
(

W
(

Ỹ , · · ·
)

+
1

2
D̄′u D̄′Ỹ − 1

2
D′ūD′Ỹ

)

= −
∫

d2σ d2θ d2θ′
(

V
(

Ỹ , · · ·
)

− Ỹ
(

z + z̄)
)

+ i

∫

dτ d2θW
(

Ỹ , · · ·
)

, (4.39)

where we have put z = i D̄+D̄−u and z̄ = iD+D−ū.
Here more care is required with the treatment of the boundary term as we will illustrate

with a simple example. Starting point is a lagrangian D1-brane with Kähler potential

V = −(w + w̄)2/2 and whose position is determined by the Dirichlet boundary condition

−i(w − w̄) = m (w + w̄) with m ∈ Z. As a consequence we find a boundary potential

W = −m (w + w̄)2/2. From the boundary condition on the twisted chiral field we get the

boundary conditions for the gauge field Ỹ : D′Ỹ = imDỸ and D̄′Ỹ = −im D̄Ỹ . We modify

the expression in eq. (4.39) to,

S = −
∫

d2σ d2θ d2θ′
(

− 1

2
Ỹ 2 − i u D̄+D̄−Ỹ − i ūD+D−Ỹ

)

+i

∫

dτ d2θ
(

− m

2
Ỹ 2 +

1

2
D̄′u

(

D̄′Ỹ + im D̄Ỹ
)

− 1

2
D′ū

(

D′Ỹ − imDỸ
)

)

, (4.40)

such that the variation of D̄′u and D′ū in the boundary term precisely reproduces the

boundary conditions for Ỹ . Upon partial integration, this becomes,

S = −
∫

d2σ d2θ d2θ′
(

− 1

2
Ỹ 2 − Ỹ

(

z + z̄)

)

+i

∫

dτ d2θ

(

− m

2
Ỹ 2 −mỸ

(

z + z̄
)

)

, (4.41)

where we used D̄+D̄− = −D̄D̄′/2. Both the bulk and the boundary variation of Ỹ yields

Ỹ = −(z + z̄) which results in the dual potentials,

Vdual =
1

2

(

z + z̄
)2
, Wdual =

m

2

(

z + z̄
)2
. (4.42)

Combining the boundary condition for Ỹ with the bulk equation of motion results in the

Neumann boundary conditions for the chiral field: D′z = imDz and D̄′z̄ = −im D̄z̄ so

that we end up with a D2-brane.

One can also dualize a lagrangian D1-brane on a two-torus parameterized by a twisted

chiral superfield to a D0-brane. Let us start from the Kähler potential V = −1
2(w + w̄)2

and the Dirichlet boundary condition w + w̄ = −i n
(

w − w̄
)

, with n ∈ Z, describing the

position of the D1-brane. For this model we can consider two different possible dualizations,

depending on the value of n. If n 6= 0 we can dualize the D1-brane to a D2-brane with

a worldvolume flux characterized by the integer n, analogous to the situation described
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above. However, if n = 0 the D1-brane is dualized to a D0-brane. The boundary potential

vanishes in that case and the first order action we start from reads,

S = −
∫

d2σ d2θ d2θ′
(

− 1

2
Ỹ 2 − i u D̄+D̄−Ỹ − i ūD+D−Ỹ

)

+ i

∫

dτ d2θ

(

+
1

2
D̄′u D̄′Ỹ − 1

2
D′ūD′Ỹ

)

, (4.43)

and Ỹ satisfies the boundary condition Ỹ = 0. When varying the Lagrange multipliers

u and ū we recover the original model parameterized by a twisted chiral superfield. It is

however crucial to notice that the fermionic derivatives of the Lagrange multipliers D̄′u
and D′ū should satisfy a Dirichlet boundary condition in order to reproduce the D1-brane

with n = 0. Upon integration by parts we find,

S = −
∫

d2σ d2θ d2θ′
(

− 1

2
Ỹ 2 − Ỹ

(

z + z̄
)

)

. (4.44)

The bulk equation of motion reads Ỹ = −
(

z + z̄
)

, while the boundary term vanishes

completely. The dual potentials are therefore given by,

Vdual =
1

2

(

z + z̄
)2
, Wdual = 0. (4.45)

Since the gauge field Ỹ satisfies the Dirichlet boundary condition Ỹ = 0, we conclude that

the chiral field z and its complex conjugate z̄ also satisfy a Dirichlet boundary condition,

z = i b, z̄ = −i b. (4.46)

Moreover, these Dirichlet boundary conditions are fully consistent with the Dirichlet boun-

dary conditions for the Lagrange mulitpliers we had to impose in the original model. We

thus find a D0-brane localized in the point Re(z) = 0 and Im(z) = b, where b is a free

parameter.

5 Examples

5.1 The WZW model on S3 × S1 and its dual formulation

We will use the Hopf surface S3×S1 — better known as the WZW-model on SU(2)×U(1)

— as a non-trivial example of various issues discussed in the preceding two sections. We

parameterize the Hopf surface with coordinates z and w where z, w ∈ (C2 \0)/Γ where Γ is

generated by (z,w) → (e2π z, e2π w). The connection with the group manifold SU(2)×U(1)

is made explicit when parameterizing a group element as,

G =
e−i ln

√
zz̄+ww̄

√
zz̄ + ww̄

(

w z̄

−z w̄

)

. (5.1)

A very useful parameterization is in terms of Hopf coordinates φ1, φ2, ρ ∈ R mod 2π and

ψ ∈ [0, π/2] where we put,

z = cosψ eρ+iφ1 , w = sinψ eρ+iφ2 . (5.2)
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In [42] it was shown that any WZW-model which has an even-dimensional target

manifold has N ≥ (2, 2). In [43] an explicit formulation of the SU(2) × U(1) model was

given in terms of a chiral and a twisted chiral superfield.11 The chiral superfield z and the

twisted chiral superfield w are precisely identified with the coordinates z and w introduced

above. The generalized Kähler potential was found to be,

V (z, z̄, w, w̄) = +

∫ zz̄/ww̄ dq

q
ln
(

1 + q
)

− 1

2

(

lnw w̄
)2
, (5.3)

which is everywhere well defined except when w = 0. However — as noted in [23] — we

can rewrite the generalized Kähler potential as,

V (z, z̄, w, w̄) = −
∫ ww̄/zz̄ dq

q
ln
(

1 + q
)

+
1

2

(

ln z z̄
)2 − ln

(

zz̄
)

ln
(

ww̄
)

, (5.4)

where the last term can be removed by a generalized Kähler transformation resulting in an

expression for the potential well defined in w = 0 (but not in z = 0). The non-vanishing

components of the metric are in these coordinates,

gzz̄ = gww̄ =
1

zz̄ + ww̄
, (5.5)

and we get for the torsion 3-form,

Hzz̄w = −1

2

w̄

(zz̄ + ww̄)2
, Hzww̄ = −1

2

z̄

(zz̄ + ww̄)2
, (5.6)

and complex conjugates. In [23], D1- and D3-branes on S3×S1 were explicitely constructed

using the above formulation. Below we will show that D2- and D4 branes exist as well on

S3 × S1, although they require a semi-chiral parameterization of the Hopf surface.

By making a different choice for the complex structures on S3 × S1 an alternative

parameterization in terms of a semi-chiral multiplet was found in [10]. The generalized

Kähler potential is now,

V (l, l̄, r, r̄) = ln
l

r̄
ln
l̄

r
−
∫ rr̄ dq

q
ln
(

1 + q
)

. (5.7)

Using this we calculate the metric,

gll̄ =
1

ll̄
, grr̄ =

1

rr̄

1

1 + rr̄
, glr = − 1

lr

1

1 + rr̄
, gl̄r̄ = − 1

l̄r̄

1

1 + rr̄
, (5.8)

and the torsion 3-form,

Hlrr̄ = −1

l

1

(1 + rr̄)2
, Hl̄rr̄ = +

1

l̄

1

(1 + rr̄)2
. (5.9)

Geometrically the two parametrizations are related by the coordinate transformation,

l = w, l̄ = w̄, r =
w̄

z
, r̄ =

w

z̄
. (5.10)

11In fact it was also shown that this is the only WZW-model which can be described without the use of

semi-chiral superfields.
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One easily verifies that the expressions for the metric and torsion are indeed equivalent

in both coordinate systems. The complex structures in both formulations are obviously

different. In the chiral/twisted chiral formulation we find that J+ and J− are diagonal

where J+ has eigenvalue +i on dz and dw while for J− one finds eigenvalue +i on dz and

eigenvalue −i on dw. In the semi-chiral parameterization we find for J+ and J−,

J+ =











+i 0 0 0

0 −i 0 0

0 −2i r
l̄

+i 0

+2i r̄
l 0 0 −i











,

J− =











i 0 0 −2i l
r̄

1
1+rr̄

0 −i +2i l̄
r

1
1+rr̄ 0

0 0 +i 0

0 0 0 −i











. (5.11)

where we labelled the rows and columns in the order ll̄rr̄.

In [23] D1- and D3-branes were constructed on S3 × S1 in the chiral/twisted chi-

ral parameterization. In this section we will study lagrangian D2-branes and maximally

coisotropic D4-branes on S3 × S1 in its semi-chiral parameterization. As the direct con-

struction of such branes is rather non-trivial we will make use of a duality transformation.

Indeed the semi-chiral model on S3 ×S1 is dual to a model on T 2 ×D where T 2 is param-

eterized by a twisted chiral and D (the disk) by a chiral field. In the dual model it is very

easy to construct general D1- and D3-brane configurations which when dualizing back to

S3 × S1 will give rise to the desired D2- and D4-branes.

We make a coordinate transformation in eq. (5.7) by replacing l by el and r by e−r

which gives,

V (l, l̄, r, r̄) =
(

l + r̄
)(

l̄ + r
)

+

∫ r+r̄

dq ln
(

1 + e−q
)

=
1

4

(

l + l̄ + r + r̄
)2 − 1

4

(

l − l̄ − r + r̄
)2

+

∫ r+r̄

dq ln
(

1 + e−q
)

. (5.12)

In these coordinates we get that the two-form Ω(−) defined in eq. (2.20) is explicitly given by,

Ω
(−)

ll̄
= Ω

(−)
lr = Ω

(−)

r̄l̄
= −i, Ω

(−)
lr̄ = Ω

(−)

l̄r
= 0, Ω

(−)
rr̄ =

i

1 + e−r−r̄
. (5.13)

The potential eq. (5.12) is readily dualized to,

Vdual = −
(

z + z̄ − w − w̄
)2

+
(

z − z̄ −w + w̄
)2 − 2

∫ z+z̄

dq ln
(

e−2q − 1
)

= −4
(

z − w
)(

z̄ − w̄
)

− 2

∫ z+z̄

dq ln
(

e−2q − 1
)

. (5.14)

Modulo a generalized Kähler transformation, one finds that the dual potential factorizes

in a part which describes a disk, Re z ≤ 0 and a part which describes a two torus,
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w ≃ w + π (n1 + i n2) with n1, n2 ∈ Z.12 Here it is rather straightforward (see [23]) to

construct globally well defined D-brane configurations. We have two cases.

1. A D1-brane

The position of the D1-brane is given by the three Dirichlet boundary conditions,

− i
(

w − w̄
)

=
m

n

(

w + w̄
)

,

z =
1

2

(

a+ i b
)

, z̄ =
1

2

(

a− i b
)

, (5.15)

where m, n ∈ Z, a, b ∈ R and constant and a ≤ 0. In order to be consistent we need

— besides the bulk potential in eq. (5.14) — a boundary potential given by,

Wdual = 2
(m

n
a− b

)

(

w + w̄
)

. (5.16)

2. A D3-brane

The position of the D3-brane is fixed by the Dirichlet boundary condition,

−i
(

w − w̄
)

=
m

n

(

w + w̄
)

+ αz + ᾱ z̄, (5.17)

where m, n ∈ Z and α ∈ C. Consistency requires the presence of a boundary poten-

tial,

Wdual = 2
(

α z + ᾱ z̄ + i
(

z − z̄
)

+
m

n

(

z + z̄
)

)

(

w + w̄
)

+ g(z + z̄), (5.18)

where g is an arbitrary real function of z + z̄.

We have now all ingredients which will allow us to dualize this to lagrangian D2-branes

and maximally coisotropic D4-branes on the Hopf surface S3 × S1.

5.2 From D1-branes on T 2 ×D to D2-branes on S3 × S1

The Dirichlet boundary conditions given in eq. (5.15) imply the following Dirichlet boun-

dary conditions on the gauge fields,

Y = a,

Ŷ = −b+
m

n
Ỹ . (5.19)

Using this, the first order action eq. (4.7) becomes,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ
)

dual
+ Y

(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ

((

2

(

m

n
a− b

)

+ i
(

l − l̄ − r + r̄
)

−m
n

(

l + l̄ + r + r̄
)

)

Ỹ + b
(

l + l̄ + r + r̄
)

− i a
(

l − l̄ + r − r̄
)

)

, (5.20)

12In [43] the S3
×S1 model in terms of a chiral and twisted chiral field was shown to be dual to the model

on D × T 2 in terms of chiral fields with the same singular metric on D as here. Note that superconformal

invariance at the quantum level requires a non-trivial dilaton as well [43].
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Varying Ỹ in the boundary term gives a Dirichlet boundary condition which is compatible

with a combination of the boundary conditions for the gauge fields and the bulk equations

of motion of the gauge fields. Integrating over the gauge fields gives in this way a D2-brane

on S3 × S1 whose position is given by,

r + r̄ = − ln
(

e−2a − 1
)

,

r − r̄ = l − l̄ + i
m

n

(

l + l̄
)

+ i

(

2b− m

n
ln(1 − e2a)

)

. (5.21)

The bulk potential is given in eq. (5.12) and the boundary potential is now,

W =

(

b+
m

n
a

)

(

l + l̄
)

− 2i a
(

l − l̄
)

. (5.22)

One checks that the Dirichlet boundary conditions in terms of Hopf coordinates are

rephrased as,

ψ = arcsin
√

1 − e2a ∈
[

0,
π

2

]

,

φ1 =
m

n
ρ+ b, (5.23)

where we used a 6= 0. This is indeed a lagrangian brane with respect to the symplectic

form given in eq. (5.13). It is gratifying to notice — see eq. (5.23) — that also globally

everything works out perfectly.

5.3 From D3-branes on T 2 ×D to D2-branes on S3 × S1

Taking Imα = −1 allows us to translate the Dirichlet boundary condition in eq. (5.17) into

a Dirichlet boundary condition for the gauge fields,

Ŷ = aY +
m

n
Ỹ , (5.24)

where a ≡ Reα. Using this we rewrite the first order action eq. (4.7) as,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ
)

dual
+ Y

(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ

(

2

(

a+
m

n

)

Y Ỹ + g(Y )

−Y
(

(a+ i)l + (a− i)l̄ + (a+ i)r + (a− i)r̄
)

−

Ỹ

((

m

n
− i

)

l +

(

m

n
+ i

)

l̄ +

(

m

n
+ i

)

r +

(

m

n
− i

)

r̄

))

. (5.25)

Varying Ỹ in the boundary term in eq. (5.25) gives a Dirichlet boundary condition which

upon using the bulk equations of motion is equivalent to eq. (5.24). Varying Y in the

boundary term in eq. (5.25) gives a second Dirichlet boundary condition so that we end
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up with a D2-brane on S3 × S1. Explicitly the Dirichlet boundary conditions are,

− i
(

l − l̄
)

= a
(

l + l̄ + r + r̄
)

− 1

2
g′
(

− 1

2
ln(1 + e−(r+r̄))

)

,

−i
(

r − r̄
)

=

(

a+
m

n

)

(

l + l̄ + r + r̄ + ln(1 + e−(r+r̄))
)

−1

2
g′
(

− 1

2
ln(1 + e−(r+r̄))

)

. (5.26)

In Hopf coordinates this gives,

φ1 =
m

n
ρ− a ln

(

cosψ
)

,

φ2 = a ρ+ a ln
(

cosψ
)

− 1

4
g′
(

ln(cosψ)
)

. (5.27)

Using the Dirichlet boundary conditions and the equations of motion we can write the dual

boundary potential as,

Wdual =
1

2
ln
(

1 + e−(r+r̄)
)

(

(a+ i )l + (a− i )l̄ + (a+ i )r + (a− i )r̄
)

+g

(

−1

2
ln
(

1 + e−(r+r̄)
)

)

. (5.28)

Neglecting the function g′(ln(cosψ)) (by interpreting it as a manner to describe fluctu-

ations of the D2-branes) one can easily check that the pullback of the two-form in eq. (5.13)

w.r.t. the D2-brane vanishes. Also this D2-brane is a lagrangian brane w.r.t. the symplectic

form in eq. (5.13).

5.4 From D3-branes on T 2 ×D to D4-branes on S3 × S1

For generic values of α we find that the Dirichlet boundary condition eq. (5.17) implies,

D̄

(

Ŷ +
(

i− ᾱ
)

Y − m

n
Ỹ
)

= 0

D

(

Ŷ +
(

− i− α
)

Y − m

n
Ỹ
)

= 0, (5.29)

which implies that Z1 ≡
(

Ŷ + (i− ᾱ)Y − m
n Ỹ

)

is a boundary chiral field. Note that if

Imα = −1, the boundary chiral field is real and as a consequence is a constant which is

precisely the case previously studied. For simplicity we take here α = 0 and we find that

Z1 = Ŷ + i Y − m

n
Ỹ , (5.30)

is a boundary chiral field. Using this we write the first order action eq. (4.7) as,

S = −
∫

d2σ d2θ d2θ′
(

V
(

Y, Ỹ , Ŷ
)

dual
+ Y

(

l + l̄ − r − r̄
)

− Ỹ
(

l + l̄ + r + r̄
)

−i Ŷ
(

l − l̄ − r + r̄
)

)

+ i

∫

dτ d2θ
(

(

Z1 + Z̄ 1̄
)

Ỹ − i
m

n

(

Z1 − Z̄ 1̄
)

Ỹ

+g
(

− i

2
(Z1 − Z̄ 1̄)

)

− 1

2

(

Z1 − Z̄ 1̄
)(

l − l̄ + r − r̄
)

+ i Ỹ
(

l − l̄ − r + r̄
)

−m
n
Ỹ
(

l + l̄ + r + r̄
)

− 1

2

(

Z1 + Z̄ 1̄
)(

l + l̄ + r + r̄
)

)

. (5.31)

– 38 –



J
H
E
P
0
9
(
2
0
0
9
)
1
0
5

Varying the unconstrained field Ỹ in the boundary term yields an equation fully compatible

with the bulk equations of motion. When varying Z1 and Z̄ 1̄ in the boundary term one

needs to take into account that they are constrained fields. This variation implies the

existence of a second boundary chiral field Z2,

Z2 = Ỹ − 1

2

(

l + l̄ + r + r̄
)

− 1

2

(

l − l̄ + r − r̄
)

− i

(

1

2
g′(Y ) +

m

n
Ỹ

)

, (5.32)

where a prime denotes a derivative. The variation of Z1 and Z̄ 1̄ in the boundary term

gives D̄Z2 = DZ̄ 2̄ = 0. Hence, we constructed a (space-filling) coisotropic D4-brane with

the complex structure K w.r.t. the basis {l, l̄, r, r̄} given by,

K =
i

2n













2n+
(

n+ im
)

er+r̄ −(n− im)er+r̄ −(n− im) e
2r+2r̄

1+er+r̄

2n+

(

n+i m

)

e
r+r̄

1+e−(r+r̄)

(n+ im)er+r̄ −2n− (n− im)er+r̄ − 2n+

(

n−i m

)

e
r+r̄

1+e−(r+r̄) (n+ im) e
2r+2r̄

1+er+r̄

−(n+ im)er+r̄ (n− im)(2 + er+r̄) 2n+ (n− im)er+r̄ −(n+ im)er+r̄

−(n+ im)(2 + er+r̄) (n− im)er+r̄ (n− im)er+r̄ −2n− (n+ im)er+r̄













.

The dual boundary potential reads,

Wdual =
1

2

(

l + l̄ + r + r̄
)

[

i
(

l − l̄ − r − r̄
)

− m

n

(

l + l̄ + r + r̄
)

]

+
1

2
ln
(

1 + e−(r+r̄)
) [

i
(

l − l̄ + r − r̄
)

− m

n

(

l + l̄ + r + r̄
)

]

+g

(

−1

2
ln
(

1 + e−(r+r̄)
)

)

, (5.33)

which can also be written in terms of the boundary chiral fields as follows, when ignoring

total derivative terms,

Wdual = −1

4

(

1 − i
m

n

)

Z1Z̄ 2̄ − 1

4

(

1 + i
m

n

)

Z̄ 1̄Z2 − m

2n
Z1Z̄ 1̄

+
i

2

(

Z1 − Z̄ 1̄
)

g′
(

− i

2

(

Z1 − Z̄ 1̄
)

)

+ g

(

− i

2

(

Z1 − Z̄ 1̄
)

)

. (5.34)

So we arrive at the conclusion that S3 × S1 (or the WZW model on SU(2)×U(1)) al-

lows for D1, D3, D2 and D4 supersymmetric brane configurations. We need the description

of S3 × S1 in terms of a twisted chiral and a chiral field if we have D1- or D3-branes [23].

Lagrangian D2-branes or maximally coisotropic D4-branes require the semi-chiral descrip-

tion. From the above it should be clear that duality transformations provide for a powerful

method to construct highly non-trivial supersymmetric D-brane configurations.

6 Conclusions and discussion

The off-shell description of a general d = 2, N = (2, 2) supersymmetric non-linear σ-model

requires semi-chiral, twisted chiral and chiral superfields. In the present paper we identified

the allowed boundary conditions for these fields. The cleanest case is where only semi-chiral

and twisted chiral fields are involved. These fields share the property that they are a priori
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unconstrained on the boundary. For these fields two classes of boundary conditions are

possible: either we impose a Dirichlet boundary condition — which in its turn implies a

Neumann boundary condition as well — or we require them to be chiral on the boundary.

The result is a straightforward generalization of A-branes on Kähler manifolds: the allowed

D-brane configurations are either lagrangian or coisotropic with respect to the symplectic

structure Ω(−) = 2g (J+−J−)−1. When no semi-chiral superfields are present, Ω(−) reduces

to the Kähler two-form and we recover the usual lagrangian and coisotropic A-branes on

Kähler manifolds. Once semi-chiral superfields are present as well, non-Kähler geometries

become possible, but the notion of lagrangian and coisotropic branes carries over. An

example of this are the lagrangian D2-branes and the maximally coisotropic D4-branes on

S3 × S1 (which is certainly not a Kähler manifold).

The picture gets murkier once chiral fields get involved. Chiral fields remain chiral —

i.e. constrained — on the boundary. When only chiral fields are present, the situation is

still quite simple. The branes wrap around holomorphic cycles of Kähler manifold. These

are nothing but the standard B-branes on Kähler manifolds.

Once all three types of superfields are present we get into a situation interpolating

between the two cases mentioned above. In general the target manifold is not symplectic

anymore, however any bihermitian manifold is still a Poisson manifold. This allows us to

view the resulting D-brane configurations as generalized coisotropic submanifolds defined

through a foliation of the Poisson manifold by symplectic leaves.

While the precise form of the torsion potential b is gauge dependent, we found that

there is a particular gauge such that Ω+ = −(g− b)J+ is a closed two-form. As — at least

with this definition — this two-form is not globally defined, it does not define a symplectic

structure. However, when it is globally defined it allows for an alternative classification

of the allowed supersymmetric D-brane configurations. Consider e.g. the four-dimensional

case. When described in terms of two chiral fields, we can have D0-, D2- or D4-branes which

are all symplectic submanifolds with respect to Ω+. Having one chiral and one twisted

chiral superfield gives a D1-brane which is isotropic and a D3-brane which is coisotropic.

Finally a semi-chiral multiplet or two twisted chiral fields gives a lagrangian D2-brane or a

maximally coisotropic D4-brane. The latter case is indeed always lagrangian or coisotropic

as Ω+ coincides with the symplectic structure Ω(−).

An unexpected13 result of the present analysis is the fact that supersymmetric D0-

and D1-branes are rather “rare”. Indeed, the only way to get a D0-brane is by impos-

ing Dirichlet boundary conditions in all directions. This is only possible if the model is

formulated in terms of chiral superfields only. So supersymmetric D0-branes are always

B-branes on Kähler manifolds! Similarly, in order to obtain D1-branes, we need a single

twisted chiral and an arbitrary number of chiral fields. The fact that D0- and D1-branes

behave differently from the other D-branes is somewhat puzzling (note however that such

an unusual behaviour of D0- and D1-branes viz. other Dp-branes was — though in a very

different context — already seen before [49]).

The superspace formulation of these models allows for the study of T-duality trans-

13Note however that the present analysis holds only for models with a constant dilaton and no RR-fluxes.
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formations while keeping the N = 2 supersymmetry manifest. As usual, the possibility of

making a T-duality transformation requires the existence of an isometry in the target man-

ifold geometry. Having an isometry which acts on chiral or twisted chiral fields only results

in a T-duality transformation which exchanges chiral and twisted chiral fields. An isometry

which mixes chiral and twisted chiral fields non trivially yields a T-duality transformation

which exchanges a pair consisting of a twisted chiral and a chiral field for a semi-chiral

multiplet. The inverse transformation exists as well. A consequence of this is that these

duality transformations often simplify the construction of D-branes. e.g. coisotropic branes

require the existence of an additional complex structure on (a subspace of) the worldvol-

ume. As we illustrate in this paper, such branes can often be obtained through a T-duality

transformation from much simpler brane configurations.

Looking at the case relevant to compactified string theory, we arrive at the following

possible parametrizations of a six dimensional target manifold. We denote chiral fields by

z, twisted chiral fields by w and semi-chiral fields by l and r.

z1, z2, z3: The geometry is necessarily Kähler and one can have D0-, D2-, D4- and D6-

branes wrapping holomorphic cycles.

z1, z2, w3: A non-trivial H-flux can be present. One can have D1-, D3- or D5-branes

where the branes wrap holomorphic cycles in the chiral directions and a lagrangian

submanifold in the twisted chiral direction.

z1, w2, w3: Once more a non-trivial H-flux might be present. There are D2- or D4-brane

configurations which wrap a holomorphic cycle in the chiral direction and which are

lagrangian in the twisted chiral directions. Also D4- and D6-branes can be possible

where the branes are now maximally coisotropic in the twisted chiral directions.

w1, w2, w3: The geometry is again Kähler. One either has a lagrangian D3-brane or a

coisotropic D5-brane.

l, r, z: A non-trivial H-flux can be present. When the branes wrap a lagrangian subman-

ifold in the semi-chiral directions we can have D2- or D4-branes. When the brane is

maximally coisotropic in the semi-chiral directions we have D4- or D6-branes.

l, r, w: Once more a non-trivial H-flux can be present. We either have a lagrangian

D3-brane or a coisotropic D5-brane.

Presently an analysis of supersymmetric branes on various tori described by any of the

superfield combinations given above is being investigated with applications along the lines

of [44] in mind.

The whole analysis in this paper was performed at the classical level. In order to

make contact with the (α′ corrected) supergravity equations of motion and their solutions,

one needs to study the superconformal invariance of these models at the quantum level.

Having no boundaries, the one loop β-function for a general N = (2, 2) non-linear σ-model

was calculated and analysed in [45] and recently shown to be consistent with supergravity

results [46]. The results in this paper are perfectly tailored for a systematic study of
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the one-loop β-functions in the presence of D-branes. As argued in [27], the superspace

treatment automatically yields the stability conditions for the supersymmetric D-branes

which would allow to extend and reinterpret the results of [47] in a more physical context.

Work in this direction is now in progress. We would also like to stress that an economic

formulation of σ-models with the dilaton in N = (2, 2) or N = 2 superspace would be most

useful for numerous applications.

Finally a study of D- and F-terms in N = 2 boundary superspace using the technology

developed in the present paper might be very interesting. Indeed, supersymmetric D-

branes sometimes cease to remain supersymmetric when a small closed string perturbation

is switched on. Another interesting event is when a D-brane decays into a superposition of

D-branes when crossing a line of marginal stability (for both phenomena see e.g. [50]). A

manifest supersymmetric formulation might reveal the systematics of this.
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A Conventions, notations and identities

The conventions used in the present paper are essentially the same as those in [23] and [22].

However we did modify some of the notations. The torsion which was previously called T

is now more conventionally renamed to H. Semi-chiral fields were previously labelled by

r, r̄, s and s̄ and are now called l, l̄, r and r̄.

We denote the worldsheet coordinates by τ ∈ R and σ ∈ R, σ ≥ 0, and the worldsheet

light-cone coordinates are defined by,

σ=| = τ + σ, σ= = τ − σ. (A.1)

The N = (1, 1) (real) fermionic coordinates are denoted by θ+ and θ− and the correspond-

ing derivatives satisfy,

D2
+ = − i

2
∂=| , D2

− = − i

2
∂= , {D+,D−} = 0. (A.2)

The N = (1, 1) integration measure is explicitely given by,
∫

d2σ d2θ =

∫

d2σD+D−. (A.3)

Passing from N = (1, 1) to N = (2, 2) superspace requires the introduction of two more

real fermionic coordinates θ̂+ and θ̂− where the corresponding fermionic derivatives satisfy,

D̂2
+ = − i

2
∂=| , D̂2

− = − i

2
∂= , (A.4)
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and again all other — except for (A.2) — (anti-)commutators do vanish. The N = (2, 2)

integration measure is,
∫

d2σ d2θ d2θ̂ =

∫

d2σD+D− D̂+D̂−. (A.5)

Quite often a complex basis is used,

D± ≡ D̂± + iD±, D̄± ≡ D̂± − iD±, (A.6)

which satisfy,

{D+, D̄+} = −2i ∂=| , {D−, D̄−} = −2i ∂=, (A.7)

and all other anti-commutators do vanish.

When dealing with boundaries in N = (2, 2) superspace, we introduce various deriva-

tives as linear combinations of the previous ones. We summarize their definitions together

with the non-vanishing anti-commutation relations. We have,

D ≡ D+ +D−, D̂ ≡ D̂+ + D̂−,

D′ ≡ D+ −D−, D̂′ ≡ D̂+ − D̂−, (A.8)

with,

D2 = D̂2 = D′2 = D̂′2 = − i

2
∂τ ,

{D,D′} = {D̂, D̂′} = −i∂σ . (A.9)

In addition we also use,

D ≡ D+ + D− = D̂ + iD, D′ ≡ D+ − D− = D̂′ + iD′,

D̄ ≡ D̄+ + D̄− = D̂ − iD, D̄′ ≡ D̄+ − D̄− = D̂′ − iD′. (A.10)

They satisfy,

{D, D̄} = {D′, D̄′} = −2i ∂τ ,

{D, D̄′} = {D′, D̄} = −2i ∂σ . (A.11)

The integration measure we use when boundaries are present is defined by,
∫

d2σ d2θ d2θ′ ≡
∫

d2σDD̂D′D̂′ , (A.12)

and on the boundary we take,
∫

dτ d2θ ≡
∫

dτ DD̂. (A.13)

When integrating by parts one finds that the following relations are most useful,
∫

d2σ d2θ d2θ′ D± = ∓
∫

dτ d2θD± = −1

2

∫

dτ d2θD′ ,
∫

d2σ d2θ d2θ′ D̄± = ±
∫

dτ d2θ D̄± = +
1

2

∫

dτ d2θ D̄′ . (A.14)
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B N = 1 non-linear σ-models

While a comprehensive review of the N = 1 non-linear σ-model in the presence of bound-

aries can be found in [22], we summarize here — in order to be self contained — its most

relevant properties.

In the absence of boundaries a non-linear σ-model (with N ≤ (1, 1)) on some d-

dimensional target manifold M is characterized by a metric gab(X) and a closed 3-form

Habc(X) where Xa are local coordinates on M and a, b, c, ... ∈ {1, · · · , d}, we also use a

locally defined 2-form potential bab(X) = −bba(X) for the torsion: Habc = −(3/2)∂[abbc].

We introduce a boundary at σ = 0 ( σ ≥ 0 ) and θ+ = θ− which breaks the invariance

under translations in both the σ and the θ′ ≡ θ+−θ− direction thus reducing the N = (1, 1)

supersymmetry to an N = 1 supersymmetry. The action,

S = −4

∫

d2σ dθD′
(

D+X
aD−X

b (gab + bab)
)

+ 2i

∫

dτ dθ Aa(X)DXa, (B.1)

is manifestly invariant under the N = 1 supersymmetry and differs from the usual action

in the absence of boundary terms by a total derivative term [20, 21]. We can drop the

boundary term provided we replace b in the bulk term by F ,

bab → Fab = bab + Fab, (B.2)

with,

Fab = ∂aAb − ∂bAa. (B.3)

Dimensionally, one could as well add a non-standard boundary term to the action,

Sb̂ = 2i

∫

dτ dθ Âa(X)D′Xa. (B.4)

A priori such a term is problematic, however through appropriate Neumann boundary

conditions it can be reduced to the standard boundary term. This is precisely the situation

we encounter when dealing with twisted chiral and semi-chiral superfields.

Varying the action eq. (B.1) yields a boundary term,

δS
∣

∣

boundary
= −2i

∫

dτdθ δXa
(

gab D
′Xb − FabDX

b
)

, (B.5)

which will only vanish upon imposing suitable boundary conditions. In order to do so we

start by imposing a set of Dirichlet boundary conditions,

Y Â(X) = 0, Â ∈ {1, · · · , d− p}. (B.6)

We denote the remainder of the coordinates — the world volume coordinates of the brane

— by,

σA(X), A ∈ {1, · · · , p}. (B.7)
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In order to make the boundary term in the variation vanish, we need to impose in addition

to the Dirichlet boundary conditions eq. (B.6), p Neumann boundary conditions,

∂Xc

∂σA
gcbD

′Xb =
∂Xc

∂σA
Fcd

∂Xd

∂σB
DσB. (B.8)

We end up with a Dp-brane whose position is determined by eq. (B.6), with a possibly

non-trivial U(1) bundle with field strength F on it.

C Some geometry

C.1 Generalized complex geometry

In this section, we review some aspects of generalized complex geometry (GCG) that are

useful for understanding some discussions in the main text, section 3.4 in particular. For

a much more detailed discussion, see [29].

To get started, let us recall some better known structures. An almost complex structure

on a manifold M is a linear map J : T → T (where T is the tangent bundle of M),14 which

satisfies J2 = −1. For our purposes this should be contrasted with the notion of a pre-

symplectic structure on M, which is simply a non-degenerate two-form Ω on M. More

abstractly, this means that a pre-symplectic structure is an isomorphism Ω : T → T ∗

(where T ∗ is the dual of T , the cotangent bundle of M), satisfying Ω∗ = −Ω.

Both notions can be naturally combined once we look at structures on the direct sum

T ⊕ T ∗, leading to the notion of a generalized complex structure (GCS). As usual, it is

useful to have a bilinear form at one’s disposal. The natural symmetric pairing on T ⊕ T ∗

is given by,

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )) , X + ξ, Y + η ∈ T ⊕ T ∗. (C.1)

Using this bilinear form, an almost GCS is a linear map J : T ⊕ T ∗ → T ⊕ T ∗, satisfying

J 2 = −1, which preserves the natural pairing, 〈JW,JZ〉 = 〈W,Z〉 for all W,Z ∈ T ⊕ T ∗.
Using the defining relation for the dual map 〈W,JZ〉 = 〈J ∗W,Z〉, the latter condition is

nothing but J ∗ = −J .

The next step is to introduce an appropriate notion of integrability. To this end one

defines the Courant bracket,

[X + ξ, Y + η] = [X,Y ] + LXη −LY ξ −
1

2
d(η(X) − ξ(Y )). (C.2)

Here the first term is the usual Lie bracket on T and LX is the Lie derivative corresponding

to X. This clearly reduces to the Lie bracket when projecting to T . One of the main useful

properties of the Courant bracket is its covariance with respect to b-transforms. A b-

transform is a symmetry of the natural pairing eq. (C.1),

eb

(

X

ξ

)

≡
(

1 0

b 1

)(

X

ξ

)

=

(

X

ξ + ιXb

)

, (C.3)

14In order to be correct, we should be speaking of smooth sections C
∞(T ) of T . We will however be a bit

sloppy here and use the same notation for a bundle and the space of its sections.
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where b is a locally defined two-form and ιXb is the inner product, ιXb(Y ) = b(X,Y ) for

all vector fields Y . It is then not hard to show that,

[eb(W ), eb(Z)] = eb[W,Z], if db = 0. (C.4)

Analogously to the case of an almost complex structure, given an almost GCS J we

can consider its +i-eigenbundle L, namely JW = +iW , for all W ∈ L. A GCS is then

an almost GCS for which its +i-eigenbundle L is involutive with respect to the Courant

bracket. Symbolically we will write this as [L,L] ⊂ L. In this case we say that the almost

GCS is integrable. Note that eq. (C.4) implies that if J is integrable with +i-eigenbundle

L, then ebJ e−b is integrable with +i-eigenbundle ebL as long as db = 0.

In the presence of a non-zero three-form H one can twist the Courant bracket by H,

[X + ξ, Y + η]H = [X + ξ, Y + η] + ιX ιYH, (C.5)

where ιX ιYH(Z) = H(Y,X,Z). With this definition, eq. (C.4) becomes,

[eb(W ), eb(Z)]H = eb[W,Z]H−db. (C.6)

This shows that this is still only a symmetry of the twisted bracket if db = 0. On the other

hand it shows that performing a b-transform with db 6= 0 changes the twisting. An almost

GCS which is integrable with respect to an H-twisted Courant bracket will be called an

H-twisted GCS. If L ⊂ T ⊕T ∗ is involutive with respect to [, ]H then ebL is involutive with

respect to [, ]H+db. In other words, if J is H-twisted, then ebJ e−b is (H + db)-twisted.

A pair (J1,J2) of commuting GCSs, such that G = −J1J2 defines a positive definite

metric on T ⊕ T ∗, is called a generalized Kähler structure (GKS). When both J1 and J2

are H-twisted, the resulting GKS is also called H-twisted. As was shown in [29], a twisted

GKS is equivalent to a bihermitian structure. Given the bihermitian data (g,H, J+, J−),

the corresponding H-twisted GKS (J+,J−) is, up to a b-transform,

J± =
1

2

(

J+ ± J− ω−1
+ ∓ ω−1

−
−(ω+ ∓ ω−) −(J t

+ ± J t
−)

)

, (C.7)

where ω± = −gJ± are two-forms,15 because g is hermitian with respect to both J±.

C.1.1 Example: Kähler structure

As an illustration of the definition of a GKS and in preparation of the discussion in the

next section, let us look at the simplest example of a GKS — a Kähler structure. A Kähler

structure (g, J,Ω) is a Riemannian metric g, a complex structure J and a symplectic

structure Ω (i.e. a pre-symplectic structure satisfying dΩ = 0), with the compatibility

condition Ω = −gJ . This last condition is usually phrased as g being hermitian with

15In this section we use a more abstract notation, viewing tensors as maps between the appropriate sets.

For instance gJ± corresponds to gacJ
c
±b in the rest of the text (apart from section 3.4). A good check for

the validity of expressions is thus that lower indices should always be contracted with upper indices when

recovering the index structure.
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respect to J . Now, a complex structure J and a symplectic structure Ω correspond to the

GCSs JJ and JΩ, respectively, where

JJ =

(

J 0

0 −J t

)

, JΩ =

(

0 Ω−1

−Ω 0

)

. (C.8)

Courant integrability of JJ is equivalent with the integrability of the complex structure

J , while Courant integrability of JΩ can be written as dΩ = 0, indeed the integrability

condition required for a symplectic structure. For a Kähler manifold — so given a Rie-

mannian metric expressible as g = ΩJ — it is easily seen that JJ and JΩ commute and

their product leads to a positive metric on T ⊕ T ∗,

G = −JJJΩ = −JΩJJ =

(

0 g−1

g 0

)

. (C.9)

In other words a Kähler manifold is an example of a generalized Kähler manifold. Note

that taking J+ = J− = J in (C.7) results in the Kähler structure (J+,J−) = (JJ ,JΩ).

In our conventions this corresponds to a local description entirely in terms of chiral fields.

The mirror description in terms of only twisted chiral fields by sending J− → −J− results

in the Kähler structure (J+,J−) = (JΩ,JJ) where indeed complex and symplectic struc-

ture data are interchanged. More generally, on defines mirror symmetry to act locally by

interchanging J+ and J−.

C.2 Generalized complex submanifolds

We now want to define the appropriate notion of generalized submanifold of a generalized

complex manifold. Again a more in-depth discussion can be found in [29]. Consider a man-

ifold M and a closed three-form H living on it. With the application to D-branes in mind,

one defines a generalized submanifold (N ,F) of the manifold (M,H) as a submanifold N
of M along with a two-form F living on N such that dF = H|N .16 One then defines the

generalized tangent bundle of N to be,

τ F
N = {X + ξ ∈ TN ⊕ T ∗

M
∣

∣

N : ξ
∣

∣

N = iXF}, (C.10)

where from now on we denote the tangent bundle of a manifold M by TM to avoid confusion

between the tangent bundle of the total space and that of the submanifold. We use the

notation T ∗
M
∣

∣

N to denote the restriction of the cotangent bundle of M to the submanifold

N , i.e of all vector fields tangent to M, only those that “start at” a point in N are sections

of this restricted bundle. Finally, a generalized complex submanifold of a generalized

complex manifold (M,J ,H), where J is an H-twisted GCS, is a submanifold (N ,F) of

(M,H) which is stable under J ,

J (τ F
N ) ⊂ τ F

N . (C.11)

16In the absence of H , this reduces to the existence of a closed two-form on N , which is the magnetic

field strength.
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This mimics (and generalizes) the definition of a holomorphic submanifold N of a complex

manifold M with complex structure J , where TN is required to be stable under J . Notice

that this definition of a generalized submanifold and tangent bundle is consistent with

changing of the twisting. Indeed, since eb(N ,F) = (M,F ′ = F + b), we find dF ′ = H + db

on N . On the other hand, ebJ e−b is (H + db)-twisted, so that it is indeed H + db, and not

just H, which enters the definition eq. (C.10) of the generalized tangent bundle.

Let us get a feeling for this definition and its usefulness by examining the two limiting

cases. The more general case is developed to some extend in section 3.4.

C.2.1 Example 1: complex manifolds

Consider a complex manifold (M, J). We can examine what it means for a submanifold

to be a generalized complex submanifold with respect to JJ . Eq. (C.11) implies

• J(TN ) ⊂ TN , i.e. N is a complex submanifold of M.

• J tF + FJ = 0 on N , i.e. F is of type (1,1) on N .

Note that this conclusion works for any complex manifold and arbitrary H. In the case

of a Kähler manifold (which also implies that H = 0), this however shows that a B brane

(N , F ) is a generalized complex submanifold with respect to JJ of the Kähler manifold M.

C.2.2 Example 2: symplectic manifolds

Since some aspects of symplectic geometry might be less familiar, we start by reviewing

these briefly. As stated before, a symplectic form Ω is a closed, non-degenerate two-form.

A manifold endowed with a symplectic form is called a symplectic manifold. A symplectic

manifold M has several types of submanifolds. A submanifold N is called symplectic,

isotropic, coisotropic or lagrangian resp. if its tangent space TN is a symplectic, isotropic,

coisotropic or lagrangian subspace resp. of the tangent space TM of the manifold M.

Given a symplectic vector space M , i.e. an even dimensional (d = 2k, k ∈ N) vec-

tor space equipped with a non-degenerate, skew-symmetric, bilinear form Ω. Consider a

subspace N of M and define its symplectic complement N⊥ by,

N⊥ = {m ∈M |Ω
(

m,n
)

= 0, ∀n ∈ N}. (C.12)

We distinguish four cases:

Symplectic subspace: N is a symplectic subspace of M if N⊥∩N = ∅. Note that e.g. for

a holomorphic submanifold N of a Kähler manifold M, TN is a symplectic subspace

of TM.

Isotropic subspace: N is an isotropic subspace of M if N ⊆ N⊥. This is true if and only

if Ω restricts to zero on N and we get dim(N) ≤ k. Every one-dimensional subspace

is isotropic.

Coisotropic subspace: N is a coisotropic subspace of M if N⊥ ⊆ N . In other words,

N is coisotropic if and only if N⊥ is isotropic. Equivalently, N is coisotropic if and
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only if Ω descends to a non-degenerate form on the quotient space N/N⊥. We get

dim(N) ≥ k and any codimension one subspace is always coisotropic.

Lagrangian subspace: N is a lagrangian subspace of M if it is simultaneously isotropic

and coisotropic, i.e. if N⊥ = N . This implies that, because of the non-degeneracy

of Ω, a lagrangian subspace is k-dimensional. Obviously Ω vanishes on a lagrangian

subspace.

We are now ready to analyze the conditions for a generalized complex submanifold of a

symplectic manifold M. For this we consider the stability of the generalized tangent bundle

under JΩ, as in eq. (C.11). This results in the following conditions:

• Ω−1(AnnTN ) ⊂ TN , where

AnnTN = {ξ ∈ T ∗
M | ξ(X) = 0,∀X ∈ TN}. (C.13)

It is easily shown that Ω−1(AnnTN ) = T⊥
N , so that this is equivalent to T⊥

N ⊂ TN ,

i.e. N is a coisotropic submanifold of M. In other words Ω is non-degenerate on

TN /T⊥
N .

• Ω−1(ιXF) = XT ∈ TN for all X ∈ TN . This implies that F(X,Y ) = Ω(XT , Y ), for

all X,Y ∈ TN . This in turn implies that ιY F = 0 for all Y ∈ T⊥
N . In other words, F

descends to a form on TN/T⊥
N .

• (Ω + FΩ−1F)(TN ) ⊂ AnnTN , or (1 +K2)(TN ) ⊂ T⊥
N , where K = Ω−1F , so that K

is a complex structure on TN /T⊥
N . This in turn implies that F is non-degenerate on

TN /T⊥
N and both Ω and F are (2,0)+ (0,2) forms with respect to K.

When T⊥
N = TN , the submanifold is lagrangian and F = 0 on N . These conditions are

precisely those for a A branes on symplectic manifolds. In particular, they coincide with the

conditions for coisotropic branes first proposed in [26]. The fact that coisotropic branes on

symplectic manifolds are generalized complex submanifolds with respect to the symplectic

structure was first established in [29].

Summarizing, a brane (N ,F) is coisotropic if N is a coisotropic submanifold and F is

zero on T⊥
N but non-degenerate on TN/T⊥

N so that Ω−1F is a complex structure on TN /T⊥
N .

C.3 Poisson structures

A Poisson manifold (M,Π) is a manifold M endowed with a Poisson structure Π. A

Poisson structure is an antisymmetric bivector Π such that the associated Poisson bracket

{f, g} ≡ Π(df, dg) = Πab∂af∂bg, (C.14)

for smooth functions f and g on M obeys the Poisson algebra, i.e. it is a Lie algebra that

acts as a derivation on the algebra of smooth functions on M,

{f, gh} = {f, g}h + g{f, h}. (C.15)
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All required conditions follow automatically from the definition (C.14), except for the

Jacobi identity. The latter is equivalent to the set of conditions,

Πd [a∂dΠ
bc] = 0, (C.16)

on the antisymmetric bivector Π. So in short, a Poisson structure is an antisymmetric

bivector which satisfies (C.16). See [48] for more details. When Π is invertible, this

condition translates to dΩ = 0, for Ω = Π−1. This implies that an invertible Poisson

structure yields a symplectic structure.

An interesting property of Poisson manifolds is that they are foliated by symplectic

leaves. The construction is very roughly as follows. A Hamiltonian vector field is a vector

field Xf associated with some function f for which

Xf (g) = {f, g}, for any function g. (C.17)

In components, this implies

Xa
f = Πba∂bf. (C.18)

We call Sx the subspace of TM spanned by these Hamiltonian vector fields at a point x of

M. If we regard Π as a map from T ∗
M to TM, i.e. Π(df) = Xf , we see that the dimension

of Sx is the rank of the map Π. A point x is called regular when the rank of Π is constant

in a neighborhood of x. We implicitly only consider regular points in this text. Now, one

can show [48] that the subspaces Sx define a (generalized) integrable distribution, and the

Poisson structure induces a symplectic structure on the leaves S. This symplectic structure

is essentially the inverse of the restriction of Π to S.

The notion of a coisotropic submanifold carries over to Poisson manifolds in the fol-

lowing way. A submanifold N of a Poisson manifold (M,Π) is called coisotropic if

Π(AnnTN ) ⊂ TN , (C.19)

where the annihilator AnnTN was defined in eq. (C.13). Equivalently, for any two functions

f and g which vanish on a coisotropic submanifold N , their Poisson bracket {f, g} also

vanishes on N [48]. It is clear from eq. (3.35) that all generalised complex submanifolds of

generalized Kähler manifolds are coisotropic in this general sense.

If Π is invertible eq. (C.19) reduces to the coisotropy condition on a symplectic man-

ifold of the previous section since Ω−1(AnnTN ) = T⊥
N , where T⊥

N denotes the symplectic

complement with respect to Ω as before.

This characterization of a coisotropic submanifold by the symplectic complement of the

tangent space has a natural generalization to the Poisson case [48]. Indeed, it is not hard

to see that in general Π(AnnTN ) for some submanifold N is the symplectic complement

of TN ∩ Sx in Sx with respect to the induced symplectic structure on S. Eq. (C.19) thus

becomes

(TN ∩ Sx)⊥ ⊂ TN . (C.20)

This obviously reduces to the standard definition on symplectic manifolds, where the foli-

ation comprises only one leaf, namely S = M.
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D Auxiliary fields and boundary conditions

As noted in section 2.2 the fields D′lα̃, D̄′l ¯̃α, D′rµ̃ and D̄′r ¯̃µ should be treated as auxiliary

fields. In an N = 1 superspace formulation these auxiliary fields are essential for the

extended supersymmetry-algebra to close off-shell in the directions along which the two

complex structures J+ and J− do not commute. The expressions for the auxiliary fields in

terms of the N = 2 superfields can be found by working out the D′ and D̄′ derivatives in

the action eq. (2.49) and varying the resulting action with respect to D′lα̃, D̄′l ¯̃α, D′rµ̃ and

D̄′r ¯̃µ. Performing this set of manipulations yields the following relations,

N D̄′X̄ = −M1 D̄X −M2 D̄X̄ −M3 D̄′Ȳ

−M4 D̄Ȳ −M5 D̄′Y −M6 DY, (D.1)

and,

D′XT N † = −DX̄T M†
1 − DXT M†

2 − D′YT M†
3

−DYT M†
4 − D′ȲT M†

5 − DȲT M†
6 , (D.2)

where we introduced XT ≡
(

lβ̃, rν̃
)

and YT ≡
(

zβ , wν
)

and

N ≡
(

V
α̃ ¯̃β

Vα̃¯̃ν

V
µ̃ ¯̃β

Vµ̃¯̃ν

)

, M1≡
(

0 2Vα̃ν̃

−2Vµ̃β̃ 0

)

, M2≡
(

V
α̃ ¯̃β

Vα̃¯̃ν

−V
µ̃ ¯̃β

−Vµ̃¯̃ν

)

, M3≡
(

Vα̃β̄ Vα̃ν̄

Vµ̃β̄ 0

)

,

M4≡
(

Vα̃β̄ Vα̃ν̄

−Vµ̃β̄ 0

)

, M5≡
(

Vα̃β 0

Vµ̃β Vµ̃ν

)

, M6≡
(

Vα̃β 0

−Vµ̃β −Vµ̃ν

)

. (D.3)

Using the N = 2 superfield constraints eqs. (2.45), (2.46) and (2.47) these relations can be

written more elegantly as,

D̄′Vα̃ = −D̄Vα̃,

D̄′Vµ̃ = +D̄Vµ̃, (D.4)

and,

D′V ¯̃α = −DV ¯̃α,

D′V ¯̃µ = +DV ¯̃µ. (D.5)

In the second part of this section we will discuss how the relations for the auxiliary

fields eqs. (D.4) and (D.5) arise, when a chiral/twisted chiral pair is dualized to a semi-chiral

multiplet. While the Dirichlet boundary conditions in the original model are dualized to the

Dirichlet or/and Neumann boundary conditions in the dual model, the Neumann boundary

conditions from the original model result in the expressions for the auxiliary fields after

dualization. This connection between the original Neumann boundary conditions and the

expressions for the auxiliary fields in the dual model thus forms an additional consistency

check for the dualization. Let us clarify these statements with the examples constructed

in section 5.
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Starting with the Dirichlet boundary conditions eq. (5.15) for the D1-brane, we can

deduce from the associated Neumann boundary condition for the twisted chiral superfield

that the gauge field Ỹ should satisfy the relations,

D′Ỹ = i
m

n
DỸ , D̄′Ỹ = −i m

n
D̄Ỹ . (D.6)

Using the equations of motion,

Ŷ = − i

2

(

l − l̄ − r + r̄
)

,

Ỹ = Y − 1

2

(

l + l̄ + r + r̄
)

,

Y = −1

2
ln
(

e−(r+r̄) + 1
)

, (D.7)

and imposing the Dirichlet boundary conditions of the dual D2-brane eqs. (5.21) enables

us to write eqs. (D.6) as,

D′ (l + l̄ + r + r̄ + ln
(

1 + e−r−r̄
))

= −D
(

l − l̄ − r − r̄
)

,

D̄′ (l + l̄ + r + r̄ + ln
(

1 + e−r−r̄
))

= +D̄
(

l − l̄ − r − r̄
)

. (D.8)

These relations can also be obtained from eqs. (D.5) and (D.4) respectively, after taking a

linear combination and imposing the dual Dirichlet boundary conditions.

When dualizing the D3-brane given in eq. (5.17) we need to distinguish between two

different cases: α = a − i and α 6= a − i. In the first case the D3-brane is dualized to a

D2-brane, in the latter case to a D4-brane. Focusing first on the lagrangian D2-brane, we

can deduce from the associated Neumann boundary condition for eq. (5.17) that the gauge

fields Ỹ and Y should satisfy the following expressions at the boundary,

D′Ỹ = +i
m

n
DỸ + i aDY + DY,

D̄′Ỹ = −i m
n

D̄Ỹ − i a D̄Y + D̄Y. (D.9)

Imposing the Dirichlet boundary condition eq. (5.24) and implementing the equations of

motion eq. (D.7), we find the following relations,

D′ (l + l̄ + r + r̄ + ln
(

1 + e−r−r̄
))

= −D
(

l − l̄ − r + r̄ − ln
(

1 + e−r−r̄
))

,

D̄′ (l + l̄ + r + r̄ + ln
(

1 + e−r−r̄
))

= +D̄
(

l − l̄ − r + r̄ − ln
(

1 + e−r−r̄
))

, (D.10)

which are just linear combinations of the expressions in eqs. (D.5) and (D.4) respectively.

The Neumann boundary conditions for the chiral superfield on the other hand can be

properly dualized to the first expression in eqs. (D.4) and (D.5).

If we choose α = 0, the D3-brane is dualized to a coisotropic D4-brane, and the

associated Neumann boundary condition for eq. (5.17) then yields the same relations for

Ỹ as in eq. (D.6). However, we need to impose the relations in eq. (5.29) for this situation,

after which we implement the equations of motion eq. (D.7). These manipulations lead to

the same expressions as in eq. (D.10), and thus reproduce the expressions for the auxiliary

fields. One can also properly dualize the Neumann boundary conditions for the chiral

superfield to the first expression given in eqs. (D.4) and (D.5) respectively.
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